MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlk Structured version   Visualization version   GIF version

Theorem rusgrnumwwlk 30008
Description: In a 𝐾-regular graph, the number of walks of a fixed length 𝑁 from a fixed vertex is 𝐾 to the power of 𝑁. By definition, (𝑁 WWalksN 𝐺) is the set of walks (as words) with length 𝑁, and (𝑃𝐿𝑁) is the number of walks with length 𝑁 starting at the vertex 𝑃. Because of the 𝐾-regularity, a walk can be continued in 𝐾 different ways at the end vertex of the walk, and this repeated 𝑁 times.

This theorem even holds for 𝑁 = 0: in this case, the walk consists of only one vertex 𝑃, so the number of walks of length 𝑁 = 0 starting with 𝑃 is (𝐾↑0) = 1. (Contributed by Alexander van der Vekens, 24-Aug-2018.) (Revised by AV, 7-May-2021.)

Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
Assertion
Ref Expression
rusgrnumwwlk ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑃𝐿𝑁) = (𝐾𝑁))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑃,𝑛,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑤,𝐾
Allowed substitution hints:   𝐾(𝑣,𝑛)   𝐿(𝑤,𝑣,𝑛)

Proof of Theorem rusgrnumwwlk
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . . . . . 8 (𝑥 = 0 → (𝑃𝐿𝑥) = (𝑃𝐿0))
2 oveq2 7456 . . . . . . . 8 (𝑥 = 0 → (𝐾𝑥) = (𝐾↑0))
31, 2eqeq12d 2756 . . . . . . 7 (𝑥 = 0 → ((𝑃𝐿𝑥) = (𝐾𝑥) ↔ (𝑃𝐿0) = (𝐾↑0)))
43imbi2d 340 . . . . . 6 (𝑥 = 0 → ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿0) = (𝐾↑0))))
5 oveq2 7456 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃𝐿𝑥) = (𝑃𝐿𝑦))
6 oveq2 7456 . . . . . . . 8 (𝑥 = 𝑦 → (𝐾𝑥) = (𝐾𝑦))
75, 6eqeq12d 2756 . . . . . . 7 (𝑥 = 𝑦 → ((𝑃𝐿𝑥) = (𝐾𝑥) ↔ (𝑃𝐿𝑦) = (𝐾𝑦)))
87imbi2d 340 . . . . . 6 (𝑥 = 𝑦 → ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑦) = (𝐾𝑦))))
9 oveq2 7456 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑃𝐿𝑥) = (𝑃𝐿(𝑦 + 1)))
10 oveq2 7456 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝐾𝑥) = (𝐾↑(𝑦 + 1)))
119, 10eqeq12d 2756 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑃𝐿𝑥) = (𝐾𝑥) ↔ (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1))))
1211imbi2d 340 . . . . . 6 (𝑥 = (𝑦 + 1) → ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1)))))
13 oveq2 7456 . . . . . . . 8 (𝑥 = 𝑁 → (𝑃𝐿𝑥) = (𝑃𝐿𝑁))
14 oveq2 7456 . . . . . . . 8 (𝑥 = 𝑁 → (𝐾𝑥) = (𝐾𝑁))
1513, 14eqeq12d 2756 . . . . . . 7 (𝑥 = 𝑁 → ((𝑃𝐿𝑥) = (𝐾𝑥) ↔ (𝑃𝐿𝑁) = (𝐾𝑁)))
1615imbi2d 340 . . . . . 6 (𝑥 = 𝑁 → ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑁) = (𝐾𝑁))))
17 rusgrusgr 29600 . . . . . . . . 9 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
18 usgruspgr 29215 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
1917, 18syl 17 . . . . . . . 8 (𝐺 RegUSGraph 𝐾𝐺 ∈ USPGraph)
20 simpr 484 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝑃𝑉) → 𝑃𝑉)
21 rusgrnumwwlk.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
22 rusgrnumwwlk.l . . . . . . . . 9 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
2321, 22rusgrnumwwlkb0 30004 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑃𝐿0) = 1)
2419, 20, 23syl2anr 596 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿0) = 1)
25 simpl 482 . . . . . . . . . . 11 ((𝑉 ∈ Fin ∧ 𝑃𝑉) → 𝑉 ∈ Fin)
2625, 17anim12ci 613 . . . . . . . . . 10 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
2721isfusgr 29353 . . . . . . . . . 10 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
2826, 27sylibr 234 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph)
29 simpr 484 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾)
30 ne0i 4364 . . . . . . . . . 10 (𝑃𝑉𝑉 ≠ ∅)
3130ad2antlr 726 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝑉 ≠ ∅)
3221frusgrnn0 29607 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
3332nn0cnd 12615 . . . . . . . . 9 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℂ)
3428, 29, 31, 33syl3anc 1371 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 ∈ ℂ)
3534exp0d 14190 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾↑0) = 1)
3624, 35eqtr4d 2783 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿0) = (𝐾↑0))
37 simpl 482 . . . . . . . . . . 11 (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ∈ Fin ∧ 𝑃𝑉))
3837anim1i 614 . . . . . . . . . 10 ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) ∧ 𝑦 ∈ ℕ0) → ((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝑦 ∈ ℕ0))
39 df-3an 1089 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑦 ∈ ℕ0) ↔ ((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝑦 ∈ ℕ0))
4038, 39sylibr 234 . . . . . . . . 9 ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) ∧ 𝑦 ∈ ℕ0) → (𝑉 ∈ Fin ∧ 𝑃𝑉𝑦 ∈ ℕ0))
4121, 22rusgrnumwwlks 30007 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑦 ∈ ℕ0)) → ((𝑃𝐿𝑦) = (𝐾𝑦) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1))))
4229, 40, 41syl2an2r 684 . . . . . . . 8 ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) ∧ 𝑦 ∈ ℕ0) → ((𝑃𝐿𝑦) = (𝐾𝑦) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1))))
4342expcom 413 . . . . . . 7 (𝑦 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → ((𝑃𝐿𝑦) = (𝐾𝑦) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1)))))
4443a2d 29 . . . . . 6 (𝑦 ∈ ℕ0 → ((((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑦) = (𝐾𝑦)) → (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1)))))
454, 8, 12, 16, 36, 44nn0ind 12738 . . . . 5 (𝑁 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑃𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑁) = (𝐾𝑁)))
4645expd 415 . . . 4 (𝑁 ∈ ℕ0 → ((𝑉 ∈ Fin ∧ 𝑃𝑉) → (𝐺 RegUSGraph 𝐾 → (𝑃𝐿𝑁) = (𝐾𝑁))))
4746com12 32 . . 3 ((𝑉 ∈ Fin ∧ 𝑃𝑉) → (𝑁 ∈ ℕ0 → (𝐺 RegUSGraph 𝐾 → (𝑃𝐿𝑁) = (𝐾𝑁))))
48473impia 1117 . 2 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝐺 RegUSGraph 𝐾 → (𝑃𝐿𝑁) = (𝐾𝑁)))
4948impcom 407 1 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑃𝐿𝑁) = (𝐾𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {crab 3443  c0 4352   class class class wbr 5166  cfv 6573  (class class class)co 7448  cmpo 7450  Fincfn 9003  cc 11182  0cc0 11184  1c1 11185   + caddc 11187  0cn0 12553  cexp 14112  chash 14379  Vtxcvtx 29031  USPGraphcuspgr 29183  USGraphcusgr 29184  FinUSGraphcfusgr 29351   RegUSGraph crusgr 29592   WWalksN cwwlksn 29859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-xadd 13176  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-vtx 29033  df-iedg 29034  df-edg 29083  df-uhgr 29093  df-ushgr 29094  df-upgr 29117  df-umgr 29118  df-uspgr 29185  df-usgr 29186  df-fusgr 29352  df-nbgr 29368  df-vtxdg 29502  df-rgr 29593  df-rusgr 29594  df-wwlks 29863  df-wwlksn 29864
This theorem is referenced by:  rusgrnumwwlkg  30009
  Copyright terms: Public domain W3C validator