Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝑃𝐿𝑥) = (𝑃𝐿0)) |
2 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝐾↑𝑥) = (𝐾↑0)) |
3 | 1, 2 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑥 = 0 → ((𝑃𝐿𝑥) = (𝐾↑𝑥) ↔ (𝑃𝐿0) = (𝐾↑0))) |
4 | 3 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 0 → ((((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾↑𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿0) = (𝐾↑0)))) |
5 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑃𝐿𝑥) = (𝑃𝐿𝑦)) |
6 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐾↑𝑥) = (𝐾↑𝑦)) |
7 | 5, 6 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑃𝐿𝑥) = (𝐾↑𝑥) ↔ (𝑃𝐿𝑦) = (𝐾↑𝑦))) |
8 | 7 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾↑𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑦) = (𝐾↑𝑦)))) |
9 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 + 1) → (𝑃𝐿𝑥) = (𝑃𝐿(𝑦 + 1))) |
10 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 + 1) → (𝐾↑𝑥) = (𝐾↑(𝑦 + 1))) |
11 | 9, 10 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → ((𝑃𝐿𝑥) = (𝐾↑𝑥) ↔ (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1)))) |
12 | 11 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → ((((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾↑𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1))))) |
13 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝑃𝐿𝑥) = (𝑃𝐿𝑁)) |
14 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝐾↑𝑥) = (𝐾↑𝑁)) |
15 | 13, 14 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → ((𝑃𝐿𝑥) = (𝐾↑𝑥) ↔ (𝑃𝐿𝑁) = (𝐾↑𝑁))) |
16 | 15 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑥) = (𝐾↑𝑥)) ↔ (((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑁) = (𝐾↑𝑁)))) |
17 | | rusgrusgr 27834 |
. . . . . . . . 9
⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) |
18 | | usgruspgr 27451 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
USPGraph) |
19 | 17, 18 | syl 17 |
. . . . . . . 8
⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USPGraph) |
20 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) → 𝑃 ∈ 𝑉) |
21 | | rusgrnumwwlk.v |
. . . . . . . . 9
⊢ 𝑉 = (Vtx‘𝐺) |
22 | | rusgrnumwwlk.l |
. . . . . . . . 9
⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦
(♯‘{𝑤 ∈
(𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
23 | 21, 22 | rusgrnumwwlkb0 28237 |
. . . . . . . 8
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (𝑃𝐿0) = 1) |
24 | 19, 20, 23 | syl2anr 596 |
. . . . . . 7
⊢ (((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿0) = 1) |
25 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) → 𝑉 ∈ Fin) |
26 | 25, 17 | anim12ci 613 |
. . . . . . . . . 10
⊢ (((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
27 | 21 | isfusgr 27588 |
. . . . . . . . . 10
⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
28 | 26, 27 | sylibr 233 |
. . . . . . . . 9
⊢ (((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph) |
29 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾) |
30 | | ne0i 4265 |
. . . . . . . . . 10
⊢ (𝑃 ∈ 𝑉 → 𝑉 ≠ ∅) |
31 | 30 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝑉 ≠ ∅) |
32 | 21 | frusgrnn0 27841 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅) → 𝐾 ∈
ℕ0) |
33 | 32 | nn0cnd 12225 |
. . . . . . . . 9
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅) → 𝐾 ∈ ℂ) |
34 | 28, 29, 31, 33 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 ∈ ℂ) |
35 | 34 | exp0d 13786 |
. . . . . . 7
⊢ (((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝐾↑0) = 1) |
36 | 24, 35 | eqtr4d 2781 |
. . . . . 6
⊢ (((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿0) = (𝐾↑0)) |
37 | | simpl 482 |
. . . . . . . . . . 11
⊢ (((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉)) |
38 | 37 | anim1i 614 |
. . . . . . . . . 10
⊢ ((((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) ∧ 𝑦 ∈ ℕ0) → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝑦 ∈
ℕ0)) |
39 | | df-3an 1087 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑦 ∈ ℕ0) ↔ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝑦 ∈
ℕ0)) |
40 | 38, 39 | sylibr 233 |
. . . . . . . . 9
⊢ ((((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) ∧ 𝑦 ∈ ℕ0) → (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑦 ∈
ℕ0)) |
41 | 21, 22 | rusgrnumwwlks 28240 |
. . . . . . . . 9
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑦 ∈ ℕ0)) → ((𝑃𝐿𝑦) = (𝐾↑𝑦) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1)))) |
42 | 29, 40, 41 | syl2an2r 681 |
. . . . . . . 8
⊢ ((((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) ∧ 𝑦 ∈ ℕ0) → ((𝑃𝐿𝑦) = (𝐾↑𝑦) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1)))) |
43 | 42 | expcom 413 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ0
→ (((𝑉 ∈ Fin
∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → ((𝑃𝐿𝑦) = (𝐾↑𝑦) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1))))) |
44 | 43 | a2d 29 |
. . . . . 6
⊢ (𝑦 ∈ ℕ0
→ ((((𝑉 ∈ Fin
∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑦) = (𝐾↑𝑦)) → (((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿(𝑦 + 1)) = (𝐾↑(𝑦 + 1))))) |
45 | 4, 8, 12, 16, 36, 44 | nn0ind 12345 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (((𝑉 ∈ Fin
∧ 𝑃 ∈ 𝑉) ∧ 𝐺 RegUSGraph 𝐾) → (𝑃𝐿𝑁) = (𝐾↑𝑁))) |
46 | 45 | expd 415 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ((𝑉 ∈ Fin ∧
𝑃 ∈ 𝑉) → (𝐺 RegUSGraph 𝐾 → (𝑃𝐿𝑁) = (𝐾↑𝑁)))) |
47 | 46 | com12 32 |
. . 3
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉) → (𝑁 ∈ ℕ0 → (𝐺 RegUSGraph 𝐾 → (𝑃𝐿𝑁) = (𝐾↑𝑁)))) |
48 | 47 | 3impia 1115 |
. 2
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐺 RegUSGraph 𝐾 → (𝑃𝐿𝑁) = (𝐾↑𝑁))) |
49 | 48 | impcom 407 |
1
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝑃𝐿𝑁) = (𝐾↑𝑁)) |