MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem1 Structured version   Visualization version   GIF version

Theorem numclwlk1lem1 30298
Description: Lemma 1 for numclwlk1 30300 (Statement 9 in [Huneke] p. 2 for n=2): "the number of closed 2-walks v(0) v(1) v(2) from v = v(0) = v(2) ... is kf(0)". (Contributed by AV, 23-May-2022.)
Hypotheses
Ref Expression
numclwlk1.v 𝑉 = (Vtx‘𝐺)
numclwlk1.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
numclwlk1.f 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
Assertion
Ref Expression
numclwlk1lem1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐾   𝑤,𝑁   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐶(𝑤)   𝐹(𝑤)

Proof of Theorem numclwlk1lem1
StepHypRef Expression
1 3anass 1094 . . . . . . 7 (((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘(1st𝑤)) = 2 ∧ (((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)))
2 anidm 564 . . . . . . . 8 ((((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((2nd𝑤)‘0) = 𝑋)
32anbi2i 623 . . . . . . 7 (((♯‘(1st𝑤)) = 2 ∧ (((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋))
41, 3bitri 275 . . . . . 6 (((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋))
54rabbii 3411 . . . . 5 {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}
65fveq2i 6861 . . . 4 (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)})
7 simpl 482 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝑉 ∈ Fin)
8 simpr 484 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾)
9 simpl 482 . . . . 5 ((𝑋𝑉𝑁 = 2) → 𝑋𝑉)
10 numclwlk1.v . . . . . 6 𝑉 = (Vtx‘𝐺)
1110clwlknon2num 30297 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = 𝐾)
127, 8, 9, 11syl2an3an 1424 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = 𝐾)
136, 12eqtrid 2776 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}) = 𝐾)
14 rusgrusgr 29492 . . . . . . . . 9 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
1514anim2i 617 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph))
1615ancomd 461 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1710isfusgr 29245 . . . . . . 7 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1816, 17sylibr 234 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph)
19 ne0i 4304 . . . . . . 7 (𝑋𝑉𝑉 ≠ ∅)
2019adantr 480 . . . . . 6 ((𝑋𝑉𝑁 = 2) → 𝑉 ≠ ∅)
2110frusgrnn0 29499 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
2218, 8, 20, 21syl2an3an 1424 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → 𝐾 ∈ ℕ0)
2322nn0red 12504 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → 𝐾 ∈ ℝ)
24 ax-1rid 11138 . . . 4 (𝐾 ∈ ℝ → (𝐾 · 1) = 𝐾)
2523, 24syl 17 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (𝐾 · 1) = 𝐾)
2610wlkl0 30296 . . . . . . 7 (𝑋𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
2726ad2antrl 728 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
2827fveq2d 6862 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (♯‘{⟨∅, {⟨0, 𝑋⟩}⟩}))
29 opex 5424 . . . . . 6 ⟨∅, {⟨0, 𝑋⟩}⟩ ∈ V
30 hashsng 14334 . . . . . 6 (⟨∅, {⟨0, 𝑋⟩}⟩ ∈ V → (♯‘{⟨∅, {⟨0, 𝑋⟩}⟩}) = 1)
3129, 30ax-mp 5 . . . . 5 (♯‘{⟨∅, {⟨0, 𝑋⟩}⟩}) = 1
3228, 31eqtr2di 2781 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → 1 = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)}))
3332oveq2d 7403 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (𝐾 · 1) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)})))
3413, 25, 333eqtr2d 2770 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)})))
35 numclwlk1.c . . . . . 6 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
36 eqeq2 2741 . . . . . . . 8 (𝑁 = 2 → ((♯‘(1st𝑤)) = 𝑁 ↔ (♯‘(1st𝑤)) = 2))
37 oveq1 7394 . . . . . . . . . 10 (𝑁 = 2 → (𝑁 − 2) = (2 − 2))
38 2cn 12261 . . . . . . . . . . 11 2 ∈ ℂ
3938subidi 11493 . . . . . . . . . 10 (2 − 2) = 0
4037, 39eqtrdi 2780 . . . . . . . . 9 (𝑁 = 2 → (𝑁 − 2) = 0)
4140fveqeq2d 6866 . . . . . . . 8 (𝑁 = 2 → (((2nd𝑤)‘(𝑁 − 2)) = 𝑋 ↔ ((2nd𝑤)‘0) = 𝑋))
4236, 413anbi13d 1440 . . . . . . 7 (𝑁 = 2 → (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋) ↔ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)))
4342rabbidv 3413 . . . . . 6 (𝑁 = 2 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)})
4435, 43eqtrid 2776 . . . . 5 (𝑁 = 2 → 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)})
4544fveq2d 6862 . . . 4 (𝑁 = 2 → (♯‘𝐶) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}))
46 numclwlk1.f . . . . . . 7 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
4740eqeq2d 2740 . . . . . . . . 9 (𝑁 = 2 → ((♯‘(1st𝑤)) = (𝑁 − 2) ↔ (♯‘(1st𝑤)) = 0))
4847anbi1d 631 . . . . . . . 8 (𝑁 = 2 → (((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)))
4948rabbidv 3413 . . . . . . 7 (𝑁 = 2 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)})
5046, 49eqtrid 2776 . . . . . 6 (𝑁 = 2 → 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)})
5150fveq2d 6862 . . . . 5 (𝑁 = 2 → (♯‘𝐹) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)}))
5251oveq2d 7403 . . . 4 (𝑁 = 2 → (𝐾 · (♯‘𝐹)) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)})))
5345, 52eqeq12d 2745 . . 3 (𝑁 = 2 → ((♯‘𝐶) = (𝐾 · (♯‘𝐹)) ↔ (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)}))))
5453ad2antll 729 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → ((♯‘𝐶) = (𝐾 · (♯‘𝐹)) ↔ (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)}))))
5534, 54mpbird 257 1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3405  Vcvv 3447  c0 4296  {csn 4589  cop 4595   class class class wbr 5107  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Fincfn 8918  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  cmin 11405  2c2 12241  0cn0 12442  chash 14295  Vtxcvtx 28923  USGraphcusgr 29076  FinUSGraphcfusgr 29243   RegUSGraph crusgr 29484  ClWalkscclwlks 29700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-xadd 13073  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-vtx 28925  df-iedg 28926  df-edg 28975  df-uhgr 28985  df-ushgr 28986  df-upgr 29009  df-umgr 29010  df-uspgr 29077  df-usgr 29078  df-fusgr 29244  df-nbgr 29260  df-vtxdg 29394  df-rgr 29485  df-rusgr 29486  df-wlks 29527  df-clwlks 29701  df-wwlks 29760  df-wwlksn 29761  df-clwwlk 29911  df-clwwlkn 29954  df-clwwlknon 30017
This theorem is referenced by:  numclwlk1  30300
  Copyright terms: Public domain W3C validator