Proof of Theorem numclwlk1lem1
| Step | Hyp | Ref
| Expression |
| 1 | | 3anass 1095 |
. . . . . . 7
⊢
(((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋) ↔ ((♯‘(1st
‘𝑤)) = 2 ∧
(((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋))) |
| 2 | | anidm 564 |
. . . . . . . 8
⊢
((((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋) ↔ ((2nd ‘𝑤)‘0) = 𝑋) |
| 3 | 2 | anbi2i 623 |
. . . . . . 7
⊢
(((♯‘(1st ‘𝑤)) = 2 ∧ (((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)) ↔ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋)) |
| 4 | 1, 3 | bitri 275 |
. . . . . 6
⊢
(((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋) ↔ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋)) |
| 5 | 4 | rabbii 3442 |
. . . . 5
⊢ {𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋)} |
| 6 | 5 | fveq2i 6909 |
. . . 4
⊢
(♯‘{𝑤
∈ (ClWalks‘𝐺)
∣ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋)}) |
| 7 | | simpl 482 |
. . . . 5
⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝑉 ∈ Fin) |
| 8 | | simpr 484 |
. . . . 5
⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾) |
| 9 | | simpl 482 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 = 2) → 𝑋 ∈ 𝑉) |
| 10 | | numclwlk1.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
| 11 | 10 | clwlknon2num 30387 |
. . . . 5
⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋)}) = 𝐾) |
| 12 | 7, 8, 9, 11 | syl2an3an 1424 |
. . . 4
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = 𝐾) |
| 13 | 6, 12 | eqtrid 2789 |
. . 3
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = 𝐾) |
| 14 | | rusgrusgr 29582 |
. . . . . . . . 9
⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) |
| 15 | 14 | anim2i 617 |
. . . . . . . 8
⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph)) |
| 16 | 15 | ancomd 461 |
. . . . . . 7
⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 17 | 10 | isfusgr 29335 |
. . . . . . 7
⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 18 | 16, 17 | sylibr 234 |
. . . . . 6
⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph) |
| 19 | | ne0i 4341 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → 𝑉 ≠ ∅) |
| 20 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 = 2) → 𝑉 ≠ ∅) |
| 21 | 10 | frusgrnn0 29589 |
. . . . . 6
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅) → 𝐾 ∈
ℕ0) |
| 22 | 18, 8, 20, 21 | syl2an3an 1424 |
. . . . 5
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → 𝐾 ∈
ℕ0) |
| 23 | 22 | nn0red 12588 |
. . . 4
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → 𝐾 ∈ ℝ) |
| 24 | | ax-1rid 11225 |
. . . 4
⊢ (𝐾 ∈ ℝ → (𝐾 · 1) = 𝐾) |
| 25 | 23, 24 | syl 17 |
. . 3
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (𝐾 · 1) = 𝐾) |
| 26 | 10 | wlkl0 30386 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)} = {〈∅, {〈0, 𝑋〉}〉}) |
| 27 | 26 | ad2antrl 728 |
. . . . . 6
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)} = {〈∅, {〈0, 𝑋〉}〉}) |
| 28 | 27 | fveq2d 6910 |
. . . . 5
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 0 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = (♯‘{〈∅,
{〈0, 𝑋〉}〉})) |
| 29 | | opex 5469 |
. . . . . 6
⊢
〈∅, {〈0, 𝑋〉}〉 ∈ V |
| 30 | | hashsng 14408 |
. . . . . 6
⊢
(〈∅, {〈0, 𝑋〉}〉 ∈ V →
(♯‘{〈∅, {〈0, 𝑋〉}〉}) = 1) |
| 31 | 29, 30 | ax-mp 5 |
. . . . 5
⊢
(♯‘{〈∅, {〈0, 𝑋〉}〉}) = 1 |
| 32 | 28, 31 | eqtr2di 2794 |
. . . 4
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → 1 = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 0 ∧ ((2nd ‘𝑤)‘0) = 𝑋)})) |
| 33 | 32 | oveq2d 7447 |
. . 3
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (𝐾 · 1) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)}))) |
| 34 | 13, 25, 33 | 3eqtr2d 2783 |
. 2
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)}))) |
| 35 | | numclwlk1.c |
. . . . . 6
⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋 ∧ ((2nd
‘𝑤)‘(𝑁 − 2)) = 𝑋)} |
| 36 | | eqeq2 2749 |
. . . . . . . 8
⊢ (𝑁 = 2 →
((♯‘(1st ‘𝑤)) = 𝑁 ↔ (♯‘(1st
‘𝑤)) =
2)) |
| 37 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑁 = 2 → (𝑁 − 2) = (2 −
2)) |
| 38 | | 2cn 12341 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
| 39 | 38 | subidi 11580 |
. . . . . . . . . 10
⊢ (2
− 2) = 0 |
| 40 | 37, 39 | eqtrdi 2793 |
. . . . . . . . 9
⊢ (𝑁 = 2 → (𝑁 − 2) = 0) |
| 41 | 40 | fveqeq2d 6914 |
. . . . . . . 8
⊢ (𝑁 = 2 → (((2nd
‘𝑤)‘(𝑁 − 2)) = 𝑋 ↔ ((2nd ‘𝑤)‘0) = 𝑋)) |
| 42 | 36, 41 | 3anbi13d 1440 |
. . . . . . 7
⊢ (𝑁 = 2 →
(((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋) ↔ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋))) |
| 43 | 42 | rabbidv 3444 |
. . . . . 6
⊢ (𝑁 = 2 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋 ∧ ((2nd
‘𝑤)‘(𝑁 − 2)) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) |
| 44 | 35, 43 | eqtrid 2789 |
. . . . 5
⊢ (𝑁 = 2 → 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) |
| 45 | 44 | fveq2d 6910 |
. . . 4
⊢ (𝑁 = 2 → (♯‘𝐶) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)})) |
| 46 | | numclwlk1.f |
. . . . . . 7
⊢ 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = (𝑁 − 2) ∧
((2nd ‘𝑤)‘0) = 𝑋)} |
| 47 | 40 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑁 = 2 →
((♯‘(1st ‘𝑤)) = (𝑁 − 2) ↔
(♯‘(1st ‘𝑤)) = 0)) |
| 48 | 47 | anbi1d 631 |
. . . . . . . 8
⊢ (𝑁 = 2 →
(((♯‘(1st ‘𝑤)) = (𝑁 − 2) ∧ ((2nd
‘𝑤)‘0) = 𝑋) ↔
((♯‘(1st ‘𝑤)) = 0 ∧ ((2nd ‘𝑤)‘0) = 𝑋))) |
| 49 | 48 | rabbidv 3444 |
. . . . . . 7
⊢ (𝑁 = 2 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = (𝑁 − 2) ∧
((2nd ‘𝑤)‘0) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)}) |
| 50 | 46, 49 | eqtrid 2789 |
. . . . . 6
⊢ (𝑁 = 2 → 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)}) |
| 51 | 50 | fveq2d 6910 |
. . . . 5
⊢ (𝑁 = 2 → (♯‘𝐹) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 0 ∧ ((2nd ‘𝑤)‘0) = 𝑋)})) |
| 52 | 51 | oveq2d 7447 |
. . . 4
⊢ (𝑁 = 2 → (𝐾 · (♯‘𝐹)) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)}))) |
| 53 | 45, 52 | eqeq12d 2753 |
. . 3
⊢ (𝑁 = 2 →
((♯‘𝐶) = (𝐾 · (♯‘𝐹)) ↔ (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)})))) |
| 54 | 53 | ad2antll 729 |
. 2
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → ((♯‘𝐶) = (𝐾 · (♯‘𝐹)) ↔ (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)})))) |
| 55 | 34, 54 | mpbird 257 |
1
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) |