MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem1 Structured version   Visualization version   GIF version

Theorem numclwlk1lem1 30347
Description: Lemma 1 for numclwlk1 30349 (Statement 9 in [Huneke] p. 2 for n=2): "the number of closed 2-walks v(0) v(1) v(2) from v = v(0) = v(2) ... is kf(0)". (Contributed by AV, 23-May-2022.)
Hypotheses
Ref Expression
numclwlk1.v 𝑉 = (Vtx‘𝐺)
numclwlk1.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
numclwlk1.f 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
Assertion
Ref Expression
numclwlk1lem1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐾   𝑤,𝑁   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐶(𝑤)   𝐹(𝑤)

Proof of Theorem numclwlk1lem1
StepHypRef Expression
1 3anass 1094 . . . . . . 7 (((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘(1st𝑤)) = 2 ∧ (((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)))
2 anidm 564 . . . . . . . 8 ((((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((2nd𝑤)‘0) = 𝑋)
32anbi2i 623 . . . . . . 7 (((♯‘(1st𝑤)) = 2 ∧ (((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋))
41, 3bitri 275 . . . . . 6 (((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋))
54rabbii 3400 . . . . 5 {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}
65fveq2i 6825 . . . 4 (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)})
7 simpl 482 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝑉 ∈ Fin)
8 simpr 484 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾)
9 simpl 482 . . . . 5 ((𝑋𝑉𝑁 = 2) → 𝑋𝑉)
10 numclwlk1.v . . . . . 6 𝑉 = (Vtx‘𝐺)
1110clwlknon2num 30346 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = 𝐾)
127, 8, 9, 11syl2an3an 1424 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = 𝐾)
136, 12eqtrid 2778 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}) = 𝐾)
14 rusgrusgr 29544 . . . . . . . . 9 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
1514anim2i 617 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph))
1615ancomd 461 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1710isfusgr 29297 . . . . . . 7 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1816, 17sylibr 234 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph)
19 ne0i 4291 . . . . . . 7 (𝑋𝑉𝑉 ≠ ∅)
2019adantr 480 . . . . . 6 ((𝑋𝑉𝑁 = 2) → 𝑉 ≠ ∅)
2110frusgrnn0 29551 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
2218, 8, 20, 21syl2an3an 1424 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → 𝐾 ∈ ℕ0)
2322nn0red 12443 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → 𝐾 ∈ ℝ)
24 ax-1rid 11076 . . . 4 (𝐾 ∈ ℝ → (𝐾 · 1) = 𝐾)
2523, 24syl 17 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (𝐾 · 1) = 𝐾)
2610wlkl0 30345 . . . . . . 7 (𝑋𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
2726ad2antrl 728 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
2827fveq2d 6826 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (♯‘{⟨∅, {⟨0, 𝑋⟩}⟩}))
29 opex 5404 . . . . . 6 ⟨∅, {⟨0, 𝑋⟩}⟩ ∈ V
30 hashsng 14276 . . . . . 6 (⟨∅, {⟨0, 𝑋⟩}⟩ ∈ V → (♯‘{⟨∅, {⟨0, 𝑋⟩}⟩}) = 1)
3129, 30ax-mp 5 . . . . 5 (♯‘{⟨∅, {⟨0, 𝑋⟩}⟩}) = 1
3228, 31eqtr2di 2783 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → 1 = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)}))
3332oveq2d 7362 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (𝐾 · 1) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)})))
3413, 25, 333eqtr2d 2772 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)})))
35 numclwlk1.c . . . . . 6 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
36 eqeq2 2743 . . . . . . . 8 (𝑁 = 2 → ((♯‘(1st𝑤)) = 𝑁 ↔ (♯‘(1st𝑤)) = 2))
37 oveq1 7353 . . . . . . . . . 10 (𝑁 = 2 → (𝑁 − 2) = (2 − 2))
38 2cn 12200 . . . . . . . . . . 11 2 ∈ ℂ
3938subidi 11432 . . . . . . . . . 10 (2 − 2) = 0
4037, 39eqtrdi 2782 . . . . . . . . 9 (𝑁 = 2 → (𝑁 − 2) = 0)
4140fveqeq2d 6830 . . . . . . . 8 (𝑁 = 2 → (((2nd𝑤)‘(𝑁 − 2)) = 𝑋 ↔ ((2nd𝑤)‘0) = 𝑋))
4236, 413anbi13d 1440 . . . . . . 7 (𝑁 = 2 → (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋) ↔ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)))
4342rabbidv 3402 . . . . . 6 (𝑁 = 2 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)})
4435, 43eqtrid 2778 . . . . 5 (𝑁 = 2 → 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)})
4544fveq2d 6826 . . . 4 (𝑁 = 2 → (♯‘𝐶) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}))
46 numclwlk1.f . . . . . . 7 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
4740eqeq2d 2742 . . . . . . . . 9 (𝑁 = 2 → ((♯‘(1st𝑤)) = (𝑁 − 2) ↔ (♯‘(1st𝑤)) = 0))
4847anbi1d 631 . . . . . . . 8 (𝑁 = 2 → (((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)))
4948rabbidv 3402 . . . . . . 7 (𝑁 = 2 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)})
5046, 49eqtrid 2778 . . . . . 6 (𝑁 = 2 → 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)})
5150fveq2d 6826 . . . . 5 (𝑁 = 2 → (♯‘𝐹) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)}))
5251oveq2d 7362 . . . 4 (𝑁 = 2 → (𝐾 · (♯‘𝐹)) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)})))
5345, 52eqeq12d 2747 . . 3 (𝑁 = 2 → ((♯‘𝐶) = (𝐾 · (♯‘𝐹)) ↔ (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)}))))
5453ad2antll 729 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → ((♯‘𝐶) = (𝐾 · (♯‘𝐹)) ↔ (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)}))))
5534, 54mpbird 257 1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  {crab 3395  Vcvv 3436  c0 4283  {csn 4576  cop 4582   class class class wbr 5091  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Fincfn 8869  cr 11005  0cc0 11006  1c1 11007   · cmul 11011  cmin 11344  2c2 12180  0cn0 12381  chash 14237  Vtxcvtx 28975  USGraphcusgr 29128  FinUSGraphcfusgr 29295   RegUSGraph crusgr 29536  ClWalkscclwlks 29749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-rp 12891  df-xadd 13012  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-vtx 28977  df-iedg 28978  df-edg 29027  df-uhgr 29037  df-ushgr 29038  df-upgr 29061  df-umgr 29062  df-uspgr 29129  df-usgr 29130  df-fusgr 29296  df-nbgr 29312  df-vtxdg 29446  df-rgr 29537  df-rusgr 29538  df-wlks 29579  df-clwlks 29750  df-wwlks 29809  df-wwlksn 29810  df-clwwlk 29960  df-clwwlkn 30003  df-clwwlknon 30066
This theorem is referenced by:  numclwlk1  30349
  Copyright terms: Public domain W3C validator