MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem1 Structured version   Visualization version   GIF version

Theorem numclwlk1lem1 30355
Description: Lemma 1 for numclwlk1 30357 (Statement 9 in [Huneke] p. 2 for n=2): "the number of closed 2-walks v(0) v(1) v(2) from v = v(0) = v(2) ... is kf(0)". (Contributed by AV, 23-May-2022.)
Hypotheses
Ref Expression
numclwlk1.v 𝑉 = (Vtx‘𝐺)
numclwlk1.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
numclwlk1.f 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
Assertion
Ref Expression
numclwlk1lem1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐾   𝑤,𝑁   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐶(𝑤)   𝐹(𝑤)

Proof of Theorem numclwlk1lem1
StepHypRef Expression
1 3anass 1094 . . . . . . 7 (((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘(1st𝑤)) = 2 ∧ (((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)))
2 anidm 564 . . . . . . . 8 ((((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((2nd𝑤)‘0) = 𝑋)
32anbi2i 623 . . . . . . 7 (((♯‘(1st𝑤)) = 2 ∧ (((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋))
41, 3bitri 275 . . . . . 6 (((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋))
54rabbii 3426 . . . . 5 {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}
65fveq2i 6884 . . . 4 (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)})
7 simpl 482 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝑉 ∈ Fin)
8 simpr 484 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾)
9 simpl 482 . . . . 5 ((𝑋𝑉𝑁 = 2) → 𝑋𝑉)
10 numclwlk1.v . . . . . 6 𝑉 = (Vtx‘𝐺)
1110clwlknon2num 30354 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = 𝐾)
127, 8, 9, 11syl2an3an 1424 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = 𝐾)
136, 12eqtrid 2783 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}) = 𝐾)
14 rusgrusgr 29549 . . . . . . . . 9 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
1514anim2i 617 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph))
1615ancomd 461 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1710isfusgr 29302 . . . . . . 7 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1816, 17sylibr 234 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph)
19 ne0i 4321 . . . . . . 7 (𝑋𝑉𝑉 ≠ ∅)
2019adantr 480 . . . . . 6 ((𝑋𝑉𝑁 = 2) → 𝑉 ≠ ∅)
2110frusgrnn0 29556 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
2218, 8, 20, 21syl2an3an 1424 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → 𝐾 ∈ ℕ0)
2322nn0red 12568 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → 𝐾 ∈ ℝ)
24 ax-1rid 11204 . . . 4 (𝐾 ∈ ℝ → (𝐾 · 1) = 𝐾)
2523, 24syl 17 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (𝐾 · 1) = 𝐾)
2610wlkl0 30353 . . . . . . 7 (𝑋𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
2726ad2antrl 728 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
2827fveq2d 6885 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (♯‘{⟨∅, {⟨0, 𝑋⟩}⟩}))
29 opex 5444 . . . . . 6 ⟨∅, {⟨0, 𝑋⟩}⟩ ∈ V
30 hashsng 14392 . . . . . 6 (⟨∅, {⟨0, 𝑋⟩}⟩ ∈ V → (♯‘{⟨∅, {⟨0, 𝑋⟩}⟩}) = 1)
3129, 30ax-mp 5 . . . . 5 (♯‘{⟨∅, {⟨0, 𝑋⟩}⟩}) = 1
3228, 31eqtr2di 2788 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → 1 = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)}))
3332oveq2d 7426 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (𝐾 · 1) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)})))
3413, 25, 333eqtr2d 2777 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)})))
35 numclwlk1.c . . . . . 6 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
36 eqeq2 2748 . . . . . . . 8 (𝑁 = 2 → ((♯‘(1st𝑤)) = 𝑁 ↔ (♯‘(1st𝑤)) = 2))
37 oveq1 7417 . . . . . . . . . 10 (𝑁 = 2 → (𝑁 − 2) = (2 − 2))
38 2cn 12320 . . . . . . . . . . 11 2 ∈ ℂ
3938subidi 11559 . . . . . . . . . 10 (2 − 2) = 0
4037, 39eqtrdi 2787 . . . . . . . . 9 (𝑁 = 2 → (𝑁 − 2) = 0)
4140fveqeq2d 6889 . . . . . . . 8 (𝑁 = 2 → (((2nd𝑤)‘(𝑁 − 2)) = 𝑋 ↔ ((2nd𝑤)‘0) = 𝑋))
4236, 413anbi13d 1440 . . . . . . 7 (𝑁 = 2 → (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋) ↔ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)))
4342rabbidv 3428 . . . . . 6 (𝑁 = 2 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)})
4435, 43eqtrid 2783 . . . . 5 (𝑁 = 2 → 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)})
4544fveq2d 6885 . . . 4 (𝑁 = 2 → (♯‘𝐶) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}))
46 numclwlk1.f . . . . . . 7 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
4740eqeq2d 2747 . . . . . . . . 9 (𝑁 = 2 → ((♯‘(1st𝑤)) = (𝑁 − 2) ↔ (♯‘(1st𝑤)) = 0))
4847anbi1d 631 . . . . . . . 8 (𝑁 = 2 → (((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)))
4948rabbidv 3428 . . . . . . 7 (𝑁 = 2 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)})
5046, 49eqtrid 2783 . . . . . 6 (𝑁 = 2 → 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)})
5150fveq2d 6885 . . . . 5 (𝑁 = 2 → (♯‘𝐹) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)}))
5251oveq2d 7426 . . . 4 (𝑁 = 2 → (𝐾 · (♯‘𝐹)) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)})))
5345, 52eqeq12d 2752 . . 3 (𝑁 = 2 → ((♯‘𝐶) = (𝐾 · (♯‘𝐹)) ↔ (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)}))))
5453ad2antll 729 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → ((♯‘𝐶) = (𝐾 · (♯‘𝐹)) ↔ (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)}))))
5534, 54mpbird 257 1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  {crab 3420  Vcvv 3464  c0 4313  {csn 4606  cop 4612   class class class wbr 5124  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  Fincfn 8964  cr 11133  0cc0 11134  1c1 11135   · cmul 11139  cmin 11471  2c2 12300  0cn0 12506  chash 14353  Vtxcvtx 28980  USGraphcusgr 29133  FinUSGraphcfusgr 29300   RegUSGraph crusgr 29541  ClWalkscclwlks 29757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-rp 13014  df-xadd 13134  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-word 14537  df-lsw 14586  df-concat 14594  df-s1 14619  df-substr 14664  df-pfx 14694  df-vtx 28982  df-iedg 28983  df-edg 29032  df-uhgr 29042  df-ushgr 29043  df-upgr 29066  df-umgr 29067  df-uspgr 29134  df-usgr 29135  df-fusgr 29301  df-nbgr 29317  df-vtxdg 29451  df-rgr 29542  df-rusgr 29543  df-wlks 29584  df-clwlks 29758  df-wwlks 29817  df-wwlksn 29818  df-clwwlk 29968  df-clwwlkn 30011  df-clwwlknon 30074
This theorem is referenced by:  numclwlk1  30357
  Copyright terms: Public domain W3C validator