Proof of Theorem numclwlk1lem1
Step | Hyp | Ref
| Expression |
1 | | 3anass 1094 |
. . . . . . 7
⊢
(((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋) ↔ ((♯‘(1st
‘𝑤)) = 2 ∧
(((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋))) |
2 | | anidm 565 |
. . . . . . . 8
⊢
((((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋) ↔ ((2nd ‘𝑤)‘0) = 𝑋) |
3 | 2 | anbi2i 623 |
. . . . . . 7
⊢
(((♯‘(1st ‘𝑤)) = 2 ∧ (((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)) ↔ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋)) |
4 | 1, 3 | bitri 274 |
. . . . . 6
⊢
(((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋) ↔ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋)) |
5 | 4 | rabbii 3408 |
. . . . 5
⊢ {𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋)} |
6 | 5 | fveq2i 6777 |
. . . 4
⊢
(♯‘{𝑤
∈ (ClWalks‘𝐺)
∣ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋)}) |
7 | | simpl 483 |
. . . . 5
⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝑉 ∈ Fin) |
8 | | simpr 485 |
. . . . 5
⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾) |
9 | | simpl 483 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 = 2) → 𝑋 ∈ 𝑉) |
10 | | numclwlk1.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
11 | 10 | clwlknon2num 28732 |
. . . . 5
⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋)}) = 𝐾) |
12 | 7, 8, 9, 11 | syl2an3an 1421 |
. . . 4
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = 𝐾) |
13 | 6, 12 | eqtrid 2790 |
. . 3
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = 𝐾) |
14 | | rusgrusgr 27931 |
. . . . . . . . 9
⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) |
15 | 14 | anim2i 617 |
. . . . . . . 8
⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph)) |
16 | 15 | ancomd 462 |
. . . . . . 7
⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
17 | 10 | isfusgr 27685 |
. . . . . . 7
⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
18 | 16, 17 | sylibr 233 |
. . . . . 6
⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph) |
19 | | ne0i 4268 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → 𝑉 ≠ ∅) |
20 | 19 | adantr 481 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 = 2) → 𝑉 ≠ ∅) |
21 | 10 | frusgrnn0 27938 |
. . . . . 6
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅) → 𝐾 ∈
ℕ0) |
22 | 18, 8, 20, 21 | syl2an3an 1421 |
. . . . 5
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → 𝐾 ∈
ℕ0) |
23 | 22 | nn0red 12294 |
. . . 4
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → 𝐾 ∈ ℝ) |
24 | | ax-1rid 10941 |
. . . 4
⊢ (𝐾 ∈ ℝ → (𝐾 · 1) = 𝐾) |
25 | 23, 24 | syl 17 |
. . 3
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (𝐾 · 1) = 𝐾) |
26 | 10 | wlkl0 28731 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)} = {〈∅, {〈0, 𝑋〉}〉}) |
27 | 26 | ad2antrl 725 |
. . . . . 6
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)} = {〈∅, {〈0, 𝑋〉}〉}) |
28 | 27 | fveq2d 6778 |
. . . . 5
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 0 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = (♯‘{〈∅,
{〈0, 𝑋〉}〉})) |
29 | | opex 5379 |
. . . . . 6
⊢
〈∅, {〈0, 𝑋〉}〉 ∈ V |
30 | | hashsng 14084 |
. . . . . 6
⊢
(〈∅, {〈0, 𝑋〉}〉 ∈ V →
(♯‘{〈∅, {〈0, 𝑋〉}〉}) = 1) |
31 | 29, 30 | ax-mp 5 |
. . . . 5
⊢
(♯‘{〈∅, {〈0, 𝑋〉}〉}) = 1 |
32 | 28, 31 | eqtr2di 2795 |
. . . 4
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → 1 = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 0 ∧ ((2nd ‘𝑤)‘0) = 𝑋)})) |
33 | 32 | oveq2d 7291 |
. . 3
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (𝐾 · 1) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)}))) |
34 | 13, 25, 33 | 3eqtr2d 2784 |
. 2
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)}))) |
35 | | numclwlk1.c |
. . . . . 6
⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋 ∧ ((2nd
‘𝑤)‘(𝑁 − 2)) = 𝑋)} |
36 | | eqeq2 2750 |
. . . . . . . 8
⊢ (𝑁 = 2 →
((♯‘(1st ‘𝑤)) = 𝑁 ↔ (♯‘(1st
‘𝑤)) =
2)) |
37 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑁 = 2 → (𝑁 − 2) = (2 −
2)) |
38 | | 2cn 12048 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
39 | 38 | subidi 11292 |
. . . . . . . . . 10
⊢ (2
− 2) = 0 |
40 | 37, 39 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (𝑁 = 2 → (𝑁 − 2) = 0) |
41 | 40 | fveqeq2d 6782 |
. . . . . . . 8
⊢ (𝑁 = 2 → (((2nd
‘𝑤)‘(𝑁 − 2)) = 𝑋 ↔ ((2nd ‘𝑤)‘0) = 𝑋)) |
42 | 36, 41 | 3anbi13d 1437 |
. . . . . . 7
⊢ (𝑁 = 2 →
(((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋) ↔ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋))) |
43 | 42 | rabbidv 3414 |
. . . . . 6
⊢ (𝑁 = 2 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋 ∧ ((2nd
‘𝑤)‘(𝑁 − 2)) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) |
44 | 35, 43 | eqtrid 2790 |
. . . . 5
⊢ (𝑁 = 2 → 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) |
45 | 44 | fveq2d 6778 |
. . . 4
⊢ (𝑁 = 2 → (♯‘𝐶) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)})) |
46 | | numclwlk1.f |
. . . . . . 7
⊢ 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = (𝑁 − 2) ∧
((2nd ‘𝑤)‘0) = 𝑋)} |
47 | 40 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑁 = 2 →
((♯‘(1st ‘𝑤)) = (𝑁 − 2) ↔
(♯‘(1st ‘𝑤)) = 0)) |
48 | 47 | anbi1d 630 |
. . . . . . . 8
⊢ (𝑁 = 2 →
(((♯‘(1st ‘𝑤)) = (𝑁 − 2) ∧ ((2nd
‘𝑤)‘0) = 𝑋) ↔
((♯‘(1st ‘𝑤)) = 0 ∧ ((2nd ‘𝑤)‘0) = 𝑋))) |
49 | 48 | rabbidv 3414 |
. . . . . . 7
⊢ (𝑁 = 2 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = (𝑁 − 2) ∧
((2nd ‘𝑤)‘0) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)}) |
50 | 46, 49 | eqtrid 2790 |
. . . . . 6
⊢ (𝑁 = 2 → 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)}) |
51 | 50 | fveq2d 6778 |
. . . . 5
⊢ (𝑁 = 2 → (♯‘𝐹) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 0 ∧ ((2nd ‘𝑤)‘0) = 𝑋)})) |
52 | 51 | oveq2d 7291 |
. . . 4
⊢ (𝑁 = 2 → (𝐾 · (♯‘𝐹)) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)}))) |
53 | 45, 52 | eqeq12d 2754 |
. . 3
⊢ (𝑁 = 2 →
((♯‘𝐶) = (𝐾 · (♯‘𝐹)) ↔ (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)})))) |
54 | 53 | ad2antll 726 |
. 2
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → ((♯‘𝐶) = (𝐾 · (♯‘𝐹)) ↔ (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 2 ∧
((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = (𝐾 · (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 0 ∧
((2nd ‘𝑤)‘0) = 𝑋)})))) |
55 | 34, 54 | mpbird 256 |
1
⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) |