MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem1 Structured version   Visualization version   GIF version

Theorem numclwlk1lem1 29886
Description: Lemma 1 for numclwlk1 29888 (Statement 9 in [Huneke] p. 2 for n=2): "the number of closed 2-walks v(0) v(1) v(2) from v = v(0) = v(2) ... is kf(0)". (Contributed by AV, 23-May-2022.)
Hypotheses
Ref Expression
numclwlk1.v 𝑉 = (Vtxβ€˜πΊ)
numclwlk1.c 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)}
numclwlk1.f 𝐹 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}
Assertion
Ref Expression
numclwlk1lem1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) β†’ (β™―β€˜πΆ) = (𝐾 Β· (β™―β€˜πΉ)))
Distinct variable groups:   𝑀,𝐺   𝑀,𝐾   𝑀,𝑁   𝑀,𝑉   𝑀,𝑋
Allowed substitution hints:   𝐢(𝑀)   𝐹(𝑀)

Proof of Theorem numclwlk1lem1
StepHypRef Expression
1 3anass 1094 . . . . . . 7 (((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) ↔ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ (((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)))
2 anidm 564 . . . . . . . 8 ((((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) ↔ ((2nd β€˜π‘€)β€˜0) = 𝑋)
32anbi2i 622 . . . . . . 7 (((β™―β€˜(1st β€˜π‘€)) = 2 ∧ (((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) ↔ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋))
41, 3bitri 274 . . . . . 6 (((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) ↔ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋))
54rabbii 3437 . . . . 5 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}
65fveq2i 6895 . . . 4 (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}) = (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)})
7 simpl 482 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ 𝑉 ∈ Fin)
8 simpr 484 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ 𝐺 RegUSGraph 𝐾)
9 simpl 482 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 𝑁 = 2) β†’ 𝑋 ∈ 𝑉)
10 numclwlk1.v . . . . . 6 𝑉 = (Vtxβ€˜πΊ)
1110clwlknon2num 29885 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}) = 𝐾)
127, 8, 9, 11syl2an3an 1421 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) β†’ (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}) = 𝐾)
136, 12eqtrid 2783 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) β†’ (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}) = 𝐾)
14 rusgrusgr 29085 . . . . . . . . 9 (𝐺 RegUSGraph 𝐾 β†’ 𝐺 ∈ USGraph)
1514anim2i 616 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph))
1615ancomd 461 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1710isfusgr 28839 . . . . . . 7 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1816, 17sylibr 233 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ 𝐺 ∈ FinUSGraph)
19 ne0i 4335 . . . . . . 7 (𝑋 ∈ 𝑉 β†’ 𝑉 β‰  βˆ…)
2019adantr 480 . . . . . 6 ((𝑋 ∈ 𝑉 ∧ 𝑁 = 2) β†’ 𝑉 β‰  βˆ…)
2110frusgrnn0 29092 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 β‰  βˆ…) β†’ 𝐾 ∈ β„•0)
2218, 8, 20, 21syl2an3an 1421 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) β†’ 𝐾 ∈ β„•0)
2322nn0red 12538 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) β†’ 𝐾 ∈ ℝ)
24 ax-1rid 11183 . . . 4 (𝐾 ∈ ℝ β†’ (𝐾 Β· 1) = 𝐾)
2523, 24syl 17 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) β†’ (𝐾 Β· 1) = 𝐾)
2610wlkl0 29884 . . . . . . 7 (𝑋 ∈ 𝑉 β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} = {βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩})
2726ad2antrl 725 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} = {βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩})
2827fveq2d 6896 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) β†’ (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}) = (β™―β€˜{βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩}))
29 opex 5465 . . . . . 6 βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩ ∈ V
30 hashsng 14334 . . . . . 6 (βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩ ∈ V β†’ (β™―β€˜{βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩}) = 1)
3129, 30ax-mp 5 . . . . 5 (β™―β€˜{βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩}) = 1
3228, 31eqtr2di 2788 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) β†’ 1 = (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}))
3332oveq2d 7428 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) β†’ (𝐾 Β· 1) = (𝐾 Β· (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)})))
3413, 25, 333eqtr2d 2777 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) β†’ (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}) = (𝐾 Β· (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)})))
35 numclwlk1.c . . . . . 6 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)}
36 eqeq2 2743 . . . . . . . 8 (𝑁 = 2 β†’ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ↔ (β™―β€˜(1st β€˜π‘€)) = 2))
37 oveq1 7419 . . . . . . . . . 10 (𝑁 = 2 β†’ (𝑁 βˆ’ 2) = (2 βˆ’ 2))
38 2cn 12292 . . . . . . . . . . 11 2 ∈ β„‚
3938subidi 11536 . . . . . . . . . 10 (2 βˆ’ 2) = 0
4037, 39eqtrdi 2787 . . . . . . . . 9 (𝑁 = 2 β†’ (𝑁 βˆ’ 2) = 0)
4140fveqeq2d 6900 . . . . . . . 8 (𝑁 = 2 β†’ (((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋 ↔ ((2nd β€˜π‘€)β€˜0) = 𝑋))
4236, 413anbi13d 1437 . . . . . . 7 (𝑁 = 2 β†’ (((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋) ↔ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)))
4342rabbidv 3439 . . . . . 6 (𝑁 = 2 β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)} = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)})
4435, 43eqtrid 2783 . . . . 5 (𝑁 = 2 β†’ 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)})
4544fveq2d 6896 . . . 4 (𝑁 = 2 β†’ (β™―β€˜πΆ) = (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}))
46 numclwlk1.f . . . . . . 7 𝐹 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}
4740eqeq2d 2742 . . . . . . . . 9 (𝑁 = 2 β†’ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ↔ (β™―β€˜(1st β€˜π‘€)) = 0))
4847anbi1d 629 . . . . . . . 8 (𝑁 = 2 β†’ (((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) ↔ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)))
4948rabbidv 3439 . . . . . . 7 (𝑁 = 2 β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)})
5046, 49eqtrid 2783 . . . . . 6 (𝑁 = 2 β†’ 𝐹 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)})
5150fveq2d 6896 . . . . 5 (𝑁 = 2 β†’ (β™―β€˜πΉ) = (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}))
5251oveq2d 7428 . . . 4 (𝑁 = 2 β†’ (𝐾 Β· (β™―β€˜πΉ)) = (𝐾 Β· (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)})))
5345, 52eqeq12d 2747 . . 3 (𝑁 = 2 β†’ ((β™―β€˜πΆ) = (𝐾 Β· (β™―β€˜πΉ)) ↔ (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}) = (𝐾 Β· (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}))))
5453ad2antll 726 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) β†’ ((β™―β€˜πΆ) = (𝐾 Β· (β™―β€˜πΉ)) ↔ (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}) = (𝐾 Β· (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}))))
5534, 54mpbird 256 1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) β†’ (β™―β€˜πΆ) = (𝐾 Β· (β™―β€˜πΉ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  {crab 3431  Vcvv 3473  βˆ…c0 4323  {csn 4629  βŸ¨cop 4635   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7412  1st c1st 7976  2nd c2nd 7977  Fincfn 8942  β„cr 11112  0cc0 11113  1c1 11114   Β· cmul 11118   βˆ’ cmin 11449  2c2 12272  β„•0cn0 12477  β™―chash 14295  Vtxcvtx 28520  USGraphcusgr 28673  FinUSGraphcfusgr 28837   RegUSGraph crusgr 29077  ClWalkscclwlks 29291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-2o 8470  df-oadd 8473  df-er 8706  df-map 8825  df-pm 8826  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-dju 9899  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-n0 12478  df-xnn0 12550  df-z 12564  df-uz 12828  df-rp 12980  df-xadd 13098  df-fz 13490  df-fzo 13633  df-seq 13972  df-exp 14033  df-hash 14296  df-word 14470  df-lsw 14518  df-concat 14526  df-s1 14551  df-substr 14596  df-pfx 14626  df-vtx 28522  df-iedg 28523  df-edg 28572  df-uhgr 28582  df-ushgr 28583  df-upgr 28606  df-umgr 28607  df-uspgr 28674  df-usgr 28675  df-fusgr 28838  df-nbgr 28854  df-vtxdg 28987  df-rgr 29078  df-rusgr 29079  df-wlks 29120  df-clwlks 29292  df-wwlks 29348  df-wwlksn 29349  df-clwwlk 29499  df-clwwlkn 29542  df-clwwlknon 29605
This theorem is referenced by:  numclwlk1  29888
  Copyright terms: Public domain W3C validator