MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strle3 Structured version   Visualization version   GIF version

Theorem strle3 17129
Description: Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.)
Hypotheses
Ref Expression
strle1.i 𝐼 ∈ ℕ
strle1.a 𝐴 = 𝐼
strle2.j 𝐼 < 𝐽
strle2.k 𝐽 ∈ ℕ
strle2.b 𝐵 = 𝐽
strle3.k 𝐽 < 𝐾
strle3.l 𝐾 ∈ ℕ
strle3.c 𝐶 = 𝐾
Assertion
Ref Expression
strle3 {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩} Struct ⟨𝐼, 𝐾

Proof of Theorem strle3
StepHypRef Expression
1 df-tp 4634 . 2 {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩} = ({⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} ∪ {⟨𝐶, 𝑍⟩})
2 strle1.i . . . 4 𝐼 ∈ ℕ
3 strle1.a . . . 4 𝐴 = 𝐼
4 strle2.j . . . 4 𝐼 < 𝐽
5 strle2.k . . . 4 𝐽 ∈ ℕ
6 strle2.b . . . 4 𝐵 = 𝐽
72, 3, 4, 5, 6strle2 17128 . . 3 {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} Struct ⟨𝐼, 𝐽
8 strle3.l . . . 4 𝐾 ∈ ℕ
9 strle3.c . . . 4 𝐶 = 𝐾
108, 9strle1 17127 . . 3 {⟨𝐶, 𝑍⟩} Struct ⟨𝐾, 𝐾
11 strle3.k . . 3 𝐽 < 𝐾
127, 10, 11strleun 17126 . 2 ({⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} ∪ {⟨𝐶, 𝑍⟩}) Struct ⟨𝐼, 𝐾
131, 12eqbrtri 5169 1 {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩} Struct ⟨𝐼, 𝐾
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  cun 3945  {csn 4629  {cpr 4631  {ctp 4633  cop 4635   class class class wbr 5148   < clt 11279  cn 12243   Struct cstr 17115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518  df-struct 17116
This theorem is referenced by:  rngstr  17279  lmodstr  17306  ipsstr  17317  topgrpstr  17342  otpsstr  17357  odrngstr  17384  imasvalstr  17433  catstr  17948  cnfldstr  21281  cnfldstrOLD  21296  psrvalstr  21849  trkgstr  28261
  Copyright terms: Public domain W3C validator