| Step | Hyp | Ref
| Expression |
| 1 | | ishpg.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 2 | | elex 3485 |
. . . 4
⊢ (𝐺 ∈ TarskiG → 𝐺 ∈ V) |
| 3 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (LineG‘𝑔) = (LineG‘𝐺)) |
| 4 | | ishpg.l |
. . . . . . . 8
⊢ 𝐿 = (LineG‘𝐺) |
| 5 | 3, 4 | eqtr4di 2789 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (LineG‘𝑔) = 𝐿) |
| 6 | 5 | rneqd 5923 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ran (LineG‘𝑔) = ran 𝐿) |
| 7 | | ishpg.p |
. . . . . . . 8
⊢ 𝑃 = (Base‘𝐺) |
| 8 | | ishpg.i |
. . . . . . . 8
⊢ 𝐼 = (Itv‘𝐺) |
| 9 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑝 = 𝑃) |
| 10 | 9 | difeq1d 4105 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑝 ∖ 𝑑) = (𝑃 ∖ 𝑑)) |
| 11 | 10 | eleq2d 2821 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑎 ∈ (𝑝 ∖ 𝑑) ↔ 𝑎 ∈ (𝑃 ∖ 𝑑))) |
| 12 | 10 | eleq2d 2821 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑐 ∈ (𝑝 ∖ 𝑑) ↔ 𝑐 ∈ (𝑃 ∖ 𝑑))) |
| 13 | 11, 12 | anbi12d 632 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ↔ (𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)))) |
| 14 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) |
| 15 | 14 | oveqd 7427 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑎𝑖𝑐) = (𝑎𝐼𝑐)) |
| 16 | 15 | eleq2d 2821 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑡 ∈ (𝑎𝑖𝑐) ↔ 𝑡 ∈ (𝑎𝐼𝑐))) |
| 17 | 16 | rexbidv 3165 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐) ↔ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐))) |
| 18 | 13, 17 | anbi12d 632 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ↔ ((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)))) |
| 19 | 10 | eleq2d 2821 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑏 ∈ (𝑝 ∖ 𝑑) ↔ 𝑏 ∈ (𝑃 ∖ 𝑑))) |
| 20 | 19, 12 | anbi12d 632 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ↔ (𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)))) |
| 21 | 14 | oveqd 7427 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑏𝑖𝑐) = (𝑏𝐼𝑐)) |
| 22 | 21 | eleq2d 2821 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑡 ∈ (𝑏𝑖𝑐) ↔ 𝑡 ∈ (𝑏𝐼𝑐))) |
| 23 | 22 | rexbidv 3165 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐) ↔ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))) |
| 24 | 20, 23 | anbi12d 632 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)) ↔ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))) |
| 25 | 18, 24 | anbi12d 632 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐))) ↔ (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))))) |
| 26 | 9, 25 | rexeqbidv 3330 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐))) ↔ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))))) |
| 27 | 7, 8, 26 | sbcie2s 17185 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐))) ↔ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))))) |
| 28 | 27 | opabbidv 5190 |
. . . . . 6
⊢ (𝑔 = 𝐺 → {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}) |
| 29 | 6, 28 | mpteq12dv 5212 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑑 ∈ ran (LineG‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))}) = (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))})) |
| 30 | | df-hpg 28742 |
. . . . 5
⊢ hpG =
(𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))})) |
| 31 | 4 | fvexi 6895 |
. . . . . . 7
⊢ 𝐿 ∈ V |
| 32 | 31 | rnex 7911 |
. . . . . 6
⊢ ran 𝐿 ∈ V |
| 33 | 32 | mptex 7220 |
. . . . 5
⊢ (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}) ∈ V |
| 34 | 29, 30, 33 | fvmpt 6991 |
. . . 4
⊢ (𝐺 ∈ V →
(hpG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))})) |
| 35 | 1, 2, 34 | 3syl 18 |
. . 3
⊢ (𝜑 → (hpG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))})) |
| 36 | | difeq2 4100 |
. . . . . . . . . 10
⊢ (𝑑 = 𝐷 → (𝑃 ∖ 𝑑) = (𝑃 ∖ 𝐷)) |
| 37 | 36 | eleq2d 2821 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑎 ∈ (𝑃 ∖ 𝑑) ↔ 𝑎 ∈ (𝑃 ∖ 𝐷))) |
| 38 | 36 | eleq2d 2821 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑐 ∈ (𝑃 ∖ 𝑑) ↔ 𝑐 ∈ (𝑃 ∖ 𝐷))) |
| 39 | 37, 38 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ↔ (𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
| 40 | | rexeq 3305 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐))) |
| 41 | 39, 40 | anbi12d 632 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)))) |
| 42 | 36 | eleq2d 2821 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑏 ∈ (𝑃 ∖ 𝑑) ↔ 𝑏 ∈ (𝑃 ∖ 𝐷))) |
| 43 | 42, 38 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ↔ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
| 44 | | rexeq 3305 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) |
| 45 | 43, 44 | anbi12d 632 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → (((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)) ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
| 46 | 41, 45 | anbi12d 632 |
. . . . . 6
⊢ (𝑑 = 𝐷 → ((((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))))) |
| 47 | 46 | rexbidv 3165 |
. . . . 5
⊢ (𝑑 = 𝐷 → (∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))))) |
| 48 | 47 | opabbidv 5190 |
. . . 4
⊢ (𝑑 = 𝐷 → {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}) |
| 49 | 48 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑑 = 𝐷) → {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}) |
| 50 | | ishpg.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| 51 | | df-xp 5665 |
. . . . . 6
⊢ (𝑃 × 𝑃) = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)} |
| 52 | 7 | fvexi 6895 |
. . . . . . 7
⊢ 𝑃 ∈ V |
| 53 | 52, 52 | xpex 7752 |
. . . . . 6
⊢ (𝑃 × 𝑃) ∈ V |
| 54 | 51, 53 | eqeltrri 2832 |
. . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)} ∈ V |
| 55 | | eldifi 4111 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (𝑃 ∖ 𝐷) → 𝑎 ∈ 𝑃) |
| 56 | | eldifi 4111 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝑃 ∖ 𝐷) → 𝑏 ∈ 𝑃) |
| 57 | 55, 56 | anim12i 613 |
. . . . . . . . 9
⊢ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
| 58 | 57 | ad2ant2r 747 |
. . . . . . . 8
⊢ (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
| 59 | 58 | ad2ant2r 747 |
. . . . . . 7
⊢ ((((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
| 60 | 59 | rexlimivw 3138 |
. . . . . 6
⊢
(∃𝑐 ∈
𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
| 61 | 60 | ssopab2i 5530 |
. . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ⊆ {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)} |
| 62 | 54, 61 | ssexi 5297 |
. . . 4
⊢
{〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ∈ V |
| 63 | 62 | a1i 11 |
. . 3
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ∈ V) |
| 64 | 35, 49, 50, 63 | fvmptd 6998 |
. 2
⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}) |
| 65 | | vex 3468 |
. . . . . 6
⊢ 𝑎 ∈ V |
| 66 | | vex 3468 |
. . . . . 6
⊢ 𝑐 ∈ V |
| 67 | | eleq1w 2818 |
. . . . . . . 8
⊢ (𝑒 = 𝑎 → (𝑒 ∈ (𝑃 ∖ 𝐷) ↔ 𝑎 ∈ (𝑃 ∖ 𝐷))) |
| 68 | 67 | anbi1d 631 |
. . . . . . 7
⊢ (𝑒 = 𝑎 → ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)))) |
| 69 | | oveq1 7417 |
. . . . . . . . 9
⊢ (𝑒 = 𝑎 → (𝑒𝐼𝑓) = (𝑎𝐼𝑓)) |
| 70 | 69 | eleq2d 2821 |
. . . . . . . 8
⊢ (𝑒 = 𝑎 → (𝑡 ∈ (𝑒𝐼𝑓) ↔ 𝑡 ∈ (𝑎𝐼𝑓))) |
| 71 | 70 | rexbidv 3165 |
. . . . . . 7
⊢ (𝑒 = 𝑎 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓))) |
| 72 | 68, 71 | anbi12d 632 |
. . . . . 6
⊢ (𝑒 = 𝑎 → (((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓)) ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓)))) |
| 73 | | eleq1w 2818 |
. . . . . . . 8
⊢ (𝑓 = 𝑐 → (𝑓 ∈ (𝑃 ∖ 𝐷) ↔ 𝑐 ∈ (𝑃 ∖ 𝐷))) |
| 74 | 73 | anbi2d 630 |
. . . . . . 7
⊢ (𝑓 = 𝑐 → ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
| 75 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑓 = 𝑐 → (𝑎𝐼𝑓) = (𝑎𝐼𝑐)) |
| 76 | 75 | eleq2d 2821 |
. . . . . . . 8
⊢ (𝑓 = 𝑐 → (𝑡 ∈ (𝑎𝐼𝑓) ↔ 𝑡 ∈ (𝑎𝐼𝑐))) |
| 77 | 76 | rexbidv 3165 |
. . . . . . 7
⊢ (𝑓 = 𝑐 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐))) |
| 78 | 74, 77 | anbi12d 632 |
. . . . . 6
⊢ (𝑓 = 𝑐 → (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓)) ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)))) |
| 79 | | ishpg.o |
. . . . . . 7
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
| 80 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → 𝑎 = 𝑒) |
| 81 | 80 | eleq1d 2820 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑎 ∈ (𝑃 ∖ 𝐷) ↔ 𝑒 ∈ (𝑃 ∖ 𝐷))) |
| 82 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → 𝑏 = 𝑓) |
| 83 | 82 | eleq1d 2820 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑏 ∈ (𝑃 ∖ 𝐷) ↔ 𝑓 ∈ (𝑃 ∖ 𝐷))) |
| 84 | 81, 83 | anbi12d 632 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)))) |
| 85 | | oveq12 7419 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑎𝐼𝑏) = (𝑒𝐼𝑓)) |
| 86 | 85 | eleq2d 2821 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑡 ∈ (𝑒𝐼𝑓))) |
| 87 | 86 | rexbidv 3165 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓))) |
| 88 | 84, 87 | anbi12d 632 |
. . . . . . . 8
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓)))) |
| 89 | 88 | cbvopabv 5197 |
. . . . . . 7
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓))} |
| 90 | 79, 89 | eqtri 2759 |
. . . . . 6
⊢ 𝑂 = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓))} |
| 91 | 65, 66, 72, 78, 90 | brab 5523 |
. . . . 5
⊢ (𝑎𝑂𝑐 ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐))) |
| 92 | | vex 3468 |
. . . . . 6
⊢ 𝑏 ∈ V |
| 93 | | eleq1w 2818 |
. . . . . . . 8
⊢ (𝑒 = 𝑏 → (𝑒 ∈ (𝑃 ∖ 𝐷) ↔ 𝑏 ∈ (𝑃 ∖ 𝐷))) |
| 94 | 93 | anbi1d 631 |
. . . . . . 7
⊢ (𝑒 = 𝑏 → ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)))) |
| 95 | | oveq1 7417 |
. . . . . . . . 9
⊢ (𝑒 = 𝑏 → (𝑒𝐼𝑓) = (𝑏𝐼𝑓)) |
| 96 | 95 | eleq2d 2821 |
. . . . . . . 8
⊢ (𝑒 = 𝑏 → (𝑡 ∈ (𝑒𝐼𝑓) ↔ 𝑡 ∈ (𝑏𝐼𝑓))) |
| 97 | 96 | rexbidv 3165 |
. . . . . . 7
⊢ (𝑒 = 𝑏 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓))) |
| 98 | 94, 97 | anbi12d 632 |
. . . . . 6
⊢ (𝑒 = 𝑏 → (((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓)) ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓)))) |
| 99 | 73 | anbi2d 630 |
. . . . . . 7
⊢ (𝑓 = 𝑐 → ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
| 100 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑓 = 𝑐 → (𝑏𝐼𝑓) = (𝑏𝐼𝑐)) |
| 101 | 100 | eleq2d 2821 |
. . . . . . . 8
⊢ (𝑓 = 𝑐 → (𝑡 ∈ (𝑏𝐼𝑓) ↔ 𝑡 ∈ (𝑏𝐼𝑐))) |
| 102 | 101 | rexbidv 3165 |
. . . . . . 7
⊢ (𝑓 = 𝑐 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) |
| 103 | 99, 102 | anbi12d 632 |
. . . . . 6
⊢ (𝑓 = 𝑐 → (((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓)) ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
| 104 | 92, 66, 98, 103, 90 | brab 5523 |
. . . . 5
⊢ (𝑏𝑂𝑐 ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) |
| 105 | 91, 104 | anbi12i 628 |
. . . 4
⊢ ((𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
| 106 | 105 | rexbii 3084 |
. . 3
⊢
(∃𝑐 ∈
𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
| 107 | 106 | opabbii 5191 |
. 2
⊢
{〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} |
| 108 | 64, 107 | eqtr4di 2789 |
1
⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)}) |