MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishpg Structured version   Visualization version   GIF version

Theorem ishpg 26069
Description: Value of the half-plane relation for a given line 𝐷. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishpg.p 𝑃 = (Base‘𝐺)
ishpg.i 𝐼 = (Itv‘𝐺)
ishpg.l 𝐿 = (LineG‘𝐺)
ishpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
ishpg.g (𝜑𝐺 ∈ TarskiG)
ishpg.d (𝜑𝐷 ∈ ran 𝐿)
Assertion
Ref Expression
ishpg (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)})
Distinct variable groups:   𝐷,𝑎,𝑏,𝑐,𝑡   𝐺,𝑎,𝑏   𝐼,𝑎,𝑏,𝑐,𝑡   𝑃,𝑎,𝑏,𝑐,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑎,𝑏,𝑐)   𝐺(𝑡,𝑐)   𝐿(𝑡,𝑎,𝑏,𝑐)   𝑂(𝑡,𝑎,𝑏,𝑐)

Proof of Theorem ishpg
Dummy variables 𝑑 𝑒 𝑓 𝑔 𝑖 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishpg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
2 elex 3430 . . . 4 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
3 fveq2 6434 . . . . . . . 8 (𝑔 = 𝐺 → (LineG‘𝑔) = (LineG‘𝐺))
4 ishpg.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
53, 4syl6eqr 2880 . . . . . . 7 (𝑔 = 𝐺 → (LineG‘𝑔) = 𝐿)
65rneqd 5586 . . . . . 6 (𝑔 = 𝐺 → ran (LineG‘𝑔) = ran 𝐿)
7 ishpg.p . . . . . . . 8 𝑃 = (Base‘𝐺)
8 ishpg.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
9 simpl 476 . . . . . . . . . 10 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝑝 = 𝑃)
109eqcomd 2832 . . . . . . . . 9 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝑃 = 𝑝)
1110difeq1d 3955 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑃𝑑) = (𝑝𝑑))
1211eleq2d 2893 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑎 ∈ (𝑃𝑑) ↔ 𝑎 ∈ (𝑝𝑑)))
1311eleq2d 2893 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑐 ∈ (𝑃𝑑) ↔ 𝑐 ∈ (𝑝𝑑)))
1412, 13anbi12d 626 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑖 = 𝐼) → ((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ↔ (𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑))))
15 simpr 479 . . . . . . . . . . . . . . 15 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝑖 = 𝐼)
1615eqcomd 2832 . . . . . . . . . . . . . 14 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝐼 = 𝑖)
1716oveqd 6923 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑎𝐼𝑐) = (𝑎𝑖𝑐))
1817eleq2d 2893 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑡 ∈ (𝑎𝐼𝑐) ↔ 𝑡 ∈ (𝑎𝑖𝑐)))
1918rexbidv 3263 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑖 = 𝐼) → (∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐) ↔ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)))
2014, 19anbi12d 626 . . . . . . . . . 10 ((𝑝 = 𝑃𝑖 = 𝐼) → (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ↔ ((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐))))
2111eleq2d 2893 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑏 ∈ (𝑃𝑑) ↔ 𝑏 ∈ (𝑝𝑑)))
2221, 13anbi12d 626 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑖 = 𝐼) → ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ↔ (𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑))))
2316oveqd 6923 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑏𝐼𝑐) = (𝑏𝑖𝑐))
2423eleq2d 2893 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑡 ∈ (𝑏𝐼𝑐) ↔ 𝑡 ∈ (𝑏𝑖𝑐)))
2524rexbidv 3263 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑖 = 𝐼) → (∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐) ↔ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))
2622, 25anbi12d 626 . . . . . . . . . 10 ((𝑝 = 𝑃𝑖 = 𝐼) → (((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)) ↔ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐))))
2720, 26anbi12d 626 . . . . . . . . 9 ((𝑝 = 𝑃𝑖 = 𝐼) → ((((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))))
2810, 27rexeqbidv 3366 . . . . . . . 8 ((𝑝 = 𝑃𝑖 = 𝐼) → (∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ ∃𝑐𝑝 (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))))
297, 8, 28sbcie2s 16280 . . . . . . 7 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]𝑐𝑝 (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐))) ↔ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))))
3029opabbidv 4940 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]𝑐𝑝 (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))})
316, 30mpteq12dv 4957 . . . . 5 (𝑔 = 𝐺 → (𝑑 ∈ ran (LineG‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]𝑐𝑝 (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))}) = (𝑑 ∈ ran 𝐿 ↦ {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}))
32 df-hpg 26068 . . . . 5 hpG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]𝑐𝑝 (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))}))
334fvexi 6448 . . . . . . 7 𝐿 ∈ V
3433rnex 7363 . . . . . 6 ran 𝐿 ∈ V
3534mptex 6743 . . . . 5 (𝑑 ∈ ran 𝐿 ↦ {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}) ∈ V
3631, 32, 35fvmpt 6530 . . . 4 (𝐺 ∈ V → (hpG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}))
371, 2, 363syl 18 . . 3 (𝜑 → (hpG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}))
38 difeq2 3950 . . . . . . . . . 10 (𝑑 = 𝐷 → (𝑃𝑑) = (𝑃𝐷))
3938eleq2d 2893 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑎 ∈ (𝑃𝑑) ↔ 𝑎 ∈ (𝑃𝐷)))
4038eleq2d 2893 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑐 ∈ (𝑃𝑑) ↔ 𝑐 ∈ (𝑃𝐷)))
4139, 40anbi12d 626 . . . . . . . 8 (𝑑 = 𝐷 → ((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ↔ (𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷))))
42 id 22 . . . . . . . . 9 (𝑑 = 𝐷𝑑 = 𝐷)
4342rexeqdv 3358 . . . . . . . 8 (𝑑 = 𝐷 → (∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)))
4441, 43anbi12d 626 . . . . . . 7 (𝑑 = 𝐷 → (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ↔ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐))))
4538eleq2d 2893 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑏 ∈ (𝑃𝑑) ↔ 𝑏 ∈ (𝑃𝐷)))
4645, 40anbi12d 626 . . . . . . . 8 (𝑑 = 𝐷 → ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ↔ (𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷))))
4742rexeqdv 3358 . . . . . . . 8 (𝑑 = 𝐷 → (∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))
4846, 47anbi12d 626 . . . . . . 7 (𝑑 = 𝐷 → (((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)) ↔ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐))))
4944, 48anbi12d 626 . . . . . 6 (𝑑 = 𝐷 → ((((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))))
5049rexbidv 3263 . . . . 5 (𝑑 = 𝐷 → (∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))))
5150opabbidv 4940 . . . 4 (𝑑 = 𝐷 → {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))})
5251adantl 475 . . 3 ((𝜑𝑑 = 𝐷) → {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))})
53 ishpg.d . . 3 (𝜑𝐷 ∈ ran 𝐿)
54 df-xp 5349 . . . . . 6 (𝑃 × 𝑃) = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑃𝑏𝑃)}
557fvexi 6448 . . . . . . 7 𝑃 ∈ V
5655, 55xpex 7224 . . . . . 6 (𝑃 × 𝑃) ∈ V
5754, 56eqeltrri 2904 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑃𝑏𝑃)} ∈ V
58 eldifi 3960 . . . . . . . . . . . 12 (𝑎 ∈ (𝑃𝐷) → 𝑎𝑃)
59 eldifi 3960 . . . . . . . . . . . 12 (𝑏 ∈ (𝑃𝐷) → 𝑏𝑃)
6058, 59anim12i 608 . . . . . . . . . . 11 ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) → (𝑎𝑃𝑏𝑃))
6160adantrr 710 . . . . . . . . . 10 ((𝑎 ∈ (𝑃𝐷) ∧ (𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷))) → (𝑎𝑃𝑏𝑃))
6261adantlr 708 . . . . . . . . 9 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ (𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷))) → (𝑎𝑃𝑏𝑃))
6362adantlr 708 . . . . . . . 8 ((((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ (𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷))) → (𝑎𝑃𝑏𝑃))
6463adantrr 710 . . . . . . 7 ((((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐))) → (𝑎𝑃𝑏𝑃))
6564rexlimivw 3239 . . . . . 6 (∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐))) → (𝑎𝑃𝑏𝑃))
6665ssopab2i 5230 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ⊆ {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑃𝑏𝑃)}
6757, 66ssexi 5029 . . . 4 {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ∈ V
6867a1i 11 . . 3 (𝜑 → {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ∈ V)
6937, 52, 53, 68fvmptd 6536 . 2 (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))})
70 vex 3418 . . . . . . 7 𝑎 ∈ V
71 vex 3418 . . . . . . 7 𝑐 ∈ V
72 eleq1w 2890 . . . . . . . . 9 (𝑒 = 𝑎 → (𝑒 ∈ (𝑃𝐷) ↔ 𝑎 ∈ (𝑃𝐷)))
7372anbi1d 625 . . . . . . . 8 (𝑒 = 𝑎 → ((𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ↔ (𝑎 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷))))
74 oveq1 6913 . . . . . . . . . 10 (𝑒 = 𝑎 → (𝑒𝐼𝑓) = (𝑎𝐼𝑓))
7574eleq2d 2893 . . . . . . . . 9 (𝑒 = 𝑎 → (𝑡 ∈ (𝑒𝐼𝑓) ↔ 𝑡 ∈ (𝑎𝐼𝑓)))
7675rexbidv 3263 . . . . . . . 8 (𝑒 = 𝑎 → (∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑓)))
7773, 76anbi12d 626 . . . . . . 7 (𝑒 = 𝑎 → (((𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓)) ↔ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑓))))
78 eleq1w 2890 . . . . . . . . 9 (𝑓 = 𝑐 → (𝑓 ∈ (𝑃𝐷) ↔ 𝑐 ∈ (𝑃𝐷)))
7978anbi2d 624 . . . . . . . 8 (𝑓 = 𝑐 → ((𝑎 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ↔ (𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷))))
80 oveq2 6914 . . . . . . . . . 10 (𝑓 = 𝑐 → (𝑎𝐼𝑓) = (𝑎𝐼𝑐))
8180eleq2d 2893 . . . . . . . . 9 (𝑓 = 𝑐 → (𝑡 ∈ (𝑎𝐼𝑓) ↔ 𝑡 ∈ (𝑎𝐼𝑐)))
8281rexbidv 3263 . . . . . . . 8 (𝑓 = 𝑐 → (∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑓) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)))
8379, 82anbi12d 626 . . . . . . 7 (𝑓 = 𝑐 → (((𝑎 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑓)) ↔ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐))))
84 ishpg.o . . . . . . . 8 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
85 simpl 476 . . . . . . . . . . . 12 ((𝑎 = 𝑒𝑏 = 𝑓) → 𝑎 = 𝑒)
8685eleq1d 2892 . . . . . . . . . . 11 ((𝑎 = 𝑒𝑏 = 𝑓) → (𝑎 ∈ (𝑃𝐷) ↔ 𝑒 ∈ (𝑃𝐷)))
87 simpr 479 . . . . . . . . . . . 12 ((𝑎 = 𝑒𝑏 = 𝑓) → 𝑏 = 𝑓)
8887eleq1d 2892 . . . . . . . . . . 11 ((𝑎 = 𝑒𝑏 = 𝑓) → (𝑏 ∈ (𝑃𝐷) ↔ 𝑓 ∈ (𝑃𝐷)))
8986, 88anbi12d 626 . . . . . . . . . 10 ((𝑎 = 𝑒𝑏 = 𝑓) → ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ↔ (𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷))))
90 oveq12 6915 . . . . . . . . . . . 12 ((𝑎 = 𝑒𝑏 = 𝑓) → (𝑎𝐼𝑏) = (𝑒𝐼𝑓))
9190eleq2d 2893 . . . . . . . . . . 11 ((𝑎 = 𝑒𝑏 = 𝑓) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑡 ∈ (𝑒𝐼𝑓)))
9291rexbidv 3263 . . . . . . . . . 10 ((𝑎 = 𝑒𝑏 = 𝑓) → (∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓)))
9389, 92anbi12d 626 . . . . . . . . 9 ((𝑎 = 𝑒𝑏 = 𝑓) → (((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓))))
9493cbvopabv 4946 . . . . . . . 8 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))} = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓))}
9584, 94eqtri 2850 . . . . . . 7 𝑂 = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓))}
9670, 71, 77, 83, 95brab 5225 . . . . . 6 (𝑎𝑂𝑐 ↔ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)))
97 vex 3418 . . . . . . 7 𝑏 ∈ V
98 eleq1w 2890 . . . . . . . . 9 (𝑒 = 𝑏 → (𝑒 ∈ (𝑃𝐷) ↔ 𝑏 ∈ (𝑃𝐷)))
9998anbi1d 625 . . . . . . . 8 (𝑒 = 𝑏 → ((𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ↔ (𝑏 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷))))
100 oveq1 6913 . . . . . . . . . 10 (𝑒 = 𝑏 → (𝑒𝐼𝑓) = (𝑏𝐼𝑓))
101100eleq2d 2893 . . . . . . . . 9 (𝑒 = 𝑏 → (𝑡 ∈ (𝑒𝐼𝑓) ↔ 𝑡 ∈ (𝑏𝐼𝑓)))
102101rexbidv 3263 . . . . . . . 8 (𝑒 = 𝑏 → (∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑓)))
10399, 102anbi12d 626 . . . . . . 7 (𝑒 = 𝑏 → (((𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓)) ↔ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑓))))
10478anbi2d 624 . . . . . . . 8 (𝑓 = 𝑐 → ((𝑏 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ↔ (𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷))))
105 oveq2 6914 . . . . . . . . . 10 (𝑓 = 𝑐 → (𝑏𝐼𝑓) = (𝑏𝐼𝑐))
106105eleq2d 2893 . . . . . . . . 9 (𝑓 = 𝑐 → (𝑡 ∈ (𝑏𝐼𝑓) ↔ 𝑡 ∈ (𝑏𝐼𝑐)))
107106rexbidv 3263 . . . . . . . 8 (𝑓 = 𝑐 → (∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑓) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))
108104, 107anbi12d 626 . . . . . . 7 (𝑓 = 𝑐 → (((𝑏 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑓)) ↔ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐))))
10997, 71, 103, 108, 95brab 5225 . . . . . 6 (𝑏𝑂𝑐 ↔ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))
11096, 109anbi12i 622 . . . . 5 ((𝑎𝑂𝑐𝑏𝑂𝑐) ↔ (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐))))
111110rexbii 3252 . . . 4 (∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐) ↔ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐))))
112111opabbii 4941 . . 3 {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}
113112a1i 11 . 2 (𝜑 → {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))})
11469, 113eqtr4d 2865 1 (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wrex 3119  Vcvv 3415  [wsbc 3663  cdif 3796   class class class wbr 4874  {copab 4936  cmpt 4953   × cxp 5341  ran crn 5344  cfv 6124  (class class class)co 6906  Basecbs 16223  TarskiGcstrkg 25743  Itvcitv 25749  LineGclng 25750  hpGchpg 26067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-ov 6909  df-hpg 26068
This theorem is referenced by:  hpgbr  26070
  Copyright terms: Public domain W3C validator