Step | Hyp | Ref
| Expression |
1 | | ishpg.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
2 | | elex 3440 |
. . . 4
⊢ (𝐺 ∈ TarskiG → 𝐺 ∈ V) |
3 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (LineG‘𝑔) = (LineG‘𝐺)) |
4 | | ishpg.l |
. . . . . . . 8
⊢ 𝐿 = (LineG‘𝐺) |
5 | 3, 4 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (LineG‘𝑔) = 𝐿) |
6 | 5 | rneqd 5836 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ran (LineG‘𝑔) = ran 𝐿) |
7 | | ishpg.p |
. . . . . . . 8
⊢ 𝑃 = (Base‘𝐺) |
8 | | ishpg.i |
. . . . . . . 8
⊢ 𝐼 = (Itv‘𝐺) |
9 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑝 = 𝑃) |
10 | 9 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑃 = 𝑝) |
11 | 10 | difeq1d 4052 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑃 ∖ 𝑑) = (𝑝 ∖ 𝑑)) |
12 | 11 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑎 ∈ (𝑃 ∖ 𝑑) ↔ 𝑎 ∈ (𝑝 ∖ 𝑑))) |
13 | 11 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑐 ∈ (𝑃 ∖ 𝑑) ↔ 𝑐 ∈ (𝑝 ∖ 𝑑))) |
14 | 12, 13 | anbi12d 630 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ↔ (𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)))) |
15 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) |
16 | 15 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝐼 = 𝑖) |
17 | 16 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑎𝐼𝑐) = (𝑎𝑖𝑐)) |
18 | 17 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑡 ∈ (𝑎𝐼𝑐) ↔ 𝑡 ∈ (𝑎𝑖𝑐))) |
19 | 18 | rexbidv 3225 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐) ↔ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐))) |
20 | 14, 19 | anbi12d 630 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ↔ ((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)))) |
21 | 11 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑏 ∈ (𝑃 ∖ 𝑑) ↔ 𝑏 ∈ (𝑝 ∖ 𝑑))) |
22 | 21, 13 | anbi12d 630 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ↔ (𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)))) |
23 | 16 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑏𝐼𝑐) = (𝑏𝑖𝑐)) |
24 | 23 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑡 ∈ (𝑏𝐼𝑐) ↔ 𝑡 ∈ (𝑏𝑖𝑐))) |
25 | 24 | rexbidv 3225 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐) ↔ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐))) |
26 | 22, 25 | anbi12d 630 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)) ↔ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))) |
27 | 20, 26 | anbi12d 630 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐))))) |
28 | 10, 27 | rexeqbidv 3328 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ ∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐))))) |
29 | 7, 8, 28 | sbcie2s 16790 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐))) ↔ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))))) |
30 | 29 | opabbidv 5136 |
. . . . . 6
⊢ (𝑔 = 𝐺 → {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}) |
31 | 6, 30 | mpteq12dv 5161 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑑 ∈ ran (LineG‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))}) = (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))})) |
32 | | df-hpg 27023 |
. . . . 5
⊢ hpG =
(𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))})) |
33 | 4 | fvexi 6770 |
. . . . . . 7
⊢ 𝐿 ∈ V |
34 | 33 | rnex 7733 |
. . . . . 6
⊢ ran 𝐿 ∈ V |
35 | 34 | mptex 7081 |
. . . . 5
⊢ (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}) ∈ V |
36 | 31, 32, 35 | fvmpt 6857 |
. . . 4
⊢ (𝐺 ∈ V →
(hpG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))})) |
37 | 1, 2, 36 | 3syl 18 |
. . 3
⊢ (𝜑 → (hpG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))})) |
38 | | difeq2 4047 |
. . . . . . . . . 10
⊢ (𝑑 = 𝐷 → (𝑃 ∖ 𝑑) = (𝑃 ∖ 𝐷)) |
39 | 38 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑎 ∈ (𝑃 ∖ 𝑑) ↔ 𝑎 ∈ (𝑃 ∖ 𝐷))) |
40 | 38 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑐 ∈ (𝑃 ∖ 𝑑) ↔ 𝑐 ∈ (𝑃 ∖ 𝐷))) |
41 | 39, 40 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ↔ (𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
42 | | rexeq 3334 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐))) |
43 | 41, 42 | anbi12d 630 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)))) |
44 | 38 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑏 ∈ (𝑃 ∖ 𝑑) ↔ 𝑏 ∈ (𝑃 ∖ 𝐷))) |
45 | 44, 40 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ↔ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
46 | | rexeq 3334 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) |
47 | 45, 46 | anbi12d 630 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → (((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)) ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
48 | 43, 47 | anbi12d 630 |
. . . . . 6
⊢ (𝑑 = 𝐷 → ((((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))))) |
49 | 48 | rexbidv 3225 |
. . . . 5
⊢ (𝑑 = 𝐷 → (∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))))) |
50 | 49 | opabbidv 5136 |
. . . 4
⊢ (𝑑 = 𝐷 → {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}) |
51 | 50 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑑 = 𝐷) → {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}) |
52 | | ishpg.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
53 | | df-xp 5586 |
. . . . . 6
⊢ (𝑃 × 𝑃) = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)} |
54 | 7 | fvexi 6770 |
. . . . . . 7
⊢ 𝑃 ∈ V |
55 | 54, 54 | xpex 7581 |
. . . . . 6
⊢ (𝑃 × 𝑃) ∈ V |
56 | 53, 55 | eqeltrri 2836 |
. . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)} ∈ V |
57 | | eldifi 4057 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (𝑃 ∖ 𝐷) → 𝑎 ∈ 𝑃) |
58 | | eldifi 4057 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝑃 ∖ 𝐷) → 𝑏 ∈ 𝑃) |
59 | 57, 58 | anim12i 612 |
. . . . . . . . 9
⊢ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
60 | 59 | ad2ant2r 743 |
. . . . . . . 8
⊢ (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
61 | 60 | ad2ant2r 743 |
. . . . . . 7
⊢ ((((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
62 | 61 | rexlimivw 3210 |
. . . . . 6
⊢
(∃𝑐 ∈
𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
63 | 62 | ssopab2i 5456 |
. . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ⊆ {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)} |
64 | 56, 63 | ssexi 5241 |
. . . 4
⊢
{〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ∈ V |
65 | 64 | a1i 11 |
. . 3
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ∈ V) |
66 | 37, 51, 52, 65 | fvmptd 6864 |
. 2
⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}) |
67 | | vex 3426 |
. . . . . 6
⊢ 𝑎 ∈ V |
68 | | vex 3426 |
. . . . . 6
⊢ 𝑐 ∈ V |
69 | | eleq1w 2821 |
. . . . . . . 8
⊢ (𝑒 = 𝑎 → (𝑒 ∈ (𝑃 ∖ 𝐷) ↔ 𝑎 ∈ (𝑃 ∖ 𝐷))) |
70 | 69 | anbi1d 629 |
. . . . . . 7
⊢ (𝑒 = 𝑎 → ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)))) |
71 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑒 = 𝑎 → (𝑒𝐼𝑓) = (𝑎𝐼𝑓)) |
72 | 71 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑒 = 𝑎 → (𝑡 ∈ (𝑒𝐼𝑓) ↔ 𝑡 ∈ (𝑎𝐼𝑓))) |
73 | 72 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑒 = 𝑎 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓))) |
74 | 70, 73 | anbi12d 630 |
. . . . . 6
⊢ (𝑒 = 𝑎 → (((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓)) ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓)))) |
75 | | eleq1w 2821 |
. . . . . . . 8
⊢ (𝑓 = 𝑐 → (𝑓 ∈ (𝑃 ∖ 𝐷) ↔ 𝑐 ∈ (𝑃 ∖ 𝐷))) |
76 | 75 | anbi2d 628 |
. . . . . . 7
⊢ (𝑓 = 𝑐 → ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
77 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑓 = 𝑐 → (𝑎𝐼𝑓) = (𝑎𝐼𝑐)) |
78 | 77 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑓 = 𝑐 → (𝑡 ∈ (𝑎𝐼𝑓) ↔ 𝑡 ∈ (𝑎𝐼𝑐))) |
79 | 78 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑓 = 𝑐 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐))) |
80 | 76, 79 | anbi12d 630 |
. . . . . 6
⊢ (𝑓 = 𝑐 → (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓)) ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)))) |
81 | | ishpg.o |
. . . . . . 7
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
82 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → 𝑎 = 𝑒) |
83 | 82 | eleq1d 2823 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑎 ∈ (𝑃 ∖ 𝐷) ↔ 𝑒 ∈ (𝑃 ∖ 𝐷))) |
84 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → 𝑏 = 𝑓) |
85 | 84 | eleq1d 2823 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑏 ∈ (𝑃 ∖ 𝐷) ↔ 𝑓 ∈ (𝑃 ∖ 𝐷))) |
86 | 83, 85 | anbi12d 630 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)))) |
87 | | oveq12 7264 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑎𝐼𝑏) = (𝑒𝐼𝑓)) |
88 | 87 | eleq2d 2824 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑡 ∈ (𝑒𝐼𝑓))) |
89 | 88 | rexbidv 3225 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓))) |
90 | 86, 89 | anbi12d 630 |
. . . . . . . 8
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓)))) |
91 | 90 | cbvopabv 5143 |
. . . . . . 7
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓))} |
92 | 81, 91 | eqtri 2766 |
. . . . . 6
⊢ 𝑂 = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓))} |
93 | 67, 68, 74, 80, 92 | brab 5449 |
. . . . 5
⊢ (𝑎𝑂𝑐 ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐))) |
94 | | vex 3426 |
. . . . . 6
⊢ 𝑏 ∈ V |
95 | | eleq1w 2821 |
. . . . . . . 8
⊢ (𝑒 = 𝑏 → (𝑒 ∈ (𝑃 ∖ 𝐷) ↔ 𝑏 ∈ (𝑃 ∖ 𝐷))) |
96 | 95 | anbi1d 629 |
. . . . . . 7
⊢ (𝑒 = 𝑏 → ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)))) |
97 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑒 = 𝑏 → (𝑒𝐼𝑓) = (𝑏𝐼𝑓)) |
98 | 97 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑒 = 𝑏 → (𝑡 ∈ (𝑒𝐼𝑓) ↔ 𝑡 ∈ (𝑏𝐼𝑓))) |
99 | 98 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑒 = 𝑏 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓))) |
100 | 96, 99 | anbi12d 630 |
. . . . . 6
⊢ (𝑒 = 𝑏 → (((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓)) ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓)))) |
101 | 75 | anbi2d 628 |
. . . . . . 7
⊢ (𝑓 = 𝑐 → ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
102 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑓 = 𝑐 → (𝑏𝐼𝑓) = (𝑏𝐼𝑐)) |
103 | 102 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑓 = 𝑐 → (𝑡 ∈ (𝑏𝐼𝑓) ↔ 𝑡 ∈ (𝑏𝐼𝑐))) |
104 | 103 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑓 = 𝑐 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) |
105 | 101, 104 | anbi12d 630 |
. . . . . 6
⊢ (𝑓 = 𝑐 → (((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓)) ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
106 | 94, 68, 100, 105, 92 | brab 5449 |
. . . . 5
⊢ (𝑏𝑂𝑐 ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) |
107 | 93, 106 | anbi12i 626 |
. . . 4
⊢ ((𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
108 | 107 | rexbii 3177 |
. . 3
⊢
(∃𝑐 ∈
𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
109 | 108 | opabbii 5137 |
. 2
⊢
{〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} |
110 | 66, 109 | eqtr4di 2797 |
1
⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)}) |