Step | Hyp | Ref
| Expression |
1 | | ishpg.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
2 | | elex 3430 |
. . . 4
⊢ (𝐺 ∈ TarskiG → 𝐺 ∈ V) |
3 | | fveq2 6434 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (LineG‘𝑔) = (LineG‘𝐺)) |
4 | | ishpg.l |
. . . . . . . 8
⊢ 𝐿 = (LineG‘𝐺) |
5 | 3, 4 | syl6eqr 2880 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (LineG‘𝑔) = 𝐿) |
6 | 5 | rneqd 5586 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ran (LineG‘𝑔) = ran 𝐿) |
7 | | ishpg.p |
. . . . . . . 8
⊢ 𝑃 = (Base‘𝐺) |
8 | | ishpg.i |
. . . . . . . 8
⊢ 𝐼 = (Itv‘𝐺) |
9 | | simpl 476 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑝 = 𝑃) |
10 | 9 | eqcomd 2832 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑃 = 𝑝) |
11 | 10 | difeq1d 3955 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑃 ∖ 𝑑) = (𝑝 ∖ 𝑑)) |
12 | 11 | eleq2d 2893 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑎 ∈ (𝑃 ∖ 𝑑) ↔ 𝑎 ∈ (𝑝 ∖ 𝑑))) |
13 | 11 | eleq2d 2893 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑐 ∈ (𝑃 ∖ 𝑑) ↔ 𝑐 ∈ (𝑝 ∖ 𝑑))) |
14 | 12, 13 | anbi12d 626 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ↔ (𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)))) |
15 | | simpr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) |
16 | 15 | eqcomd 2832 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝐼 = 𝑖) |
17 | 16 | oveqd 6923 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑎𝐼𝑐) = (𝑎𝑖𝑐)) |
18 | 17 | eleq2d 2893 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑡 ∈ (𝑎𝐼𝑐) ↔ 𝑡 ∈ (𝑎𝑖𝑐))) |
19 | 18 | rexbidv 3263 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐) ↔ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐))) |
20 | 14, 19 | anbi12d 626 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ↔ ((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)))) |
21 | 11 | eleq2d 2893 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑏 ∈ (𝑃 ∖ 𝑑) ↔ 𝑏 ∈ (𝑝 ∖ 𝑑))) |
22 | 21, 13 | anbi12d 626 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ↔ (𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)))) |
23 | 16 | oveqd 6923 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑏𝐼𝑐) = (𝑏𝑖𝑐)) |
24 | 23 | eleq2d 2893 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑡 ∈ (𝑏𝐼𝑐) ↔ 𝑡 ∈ (𝑏𝑖𝑐))) |
25 | 24 | rexbidv 3263 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐) ↔ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐))) |
26 | 22, 25 | anbi12d 626 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)) ↔ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))) |
27 | 20, 26 | anbi12d 626 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐))))) |
28 | 10, 27 | rexeqbidv 3366 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ ∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐))))) |
29 | 7, 8, 28 | sbcie2s 16280 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐))) ↔ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))))) |
30 | 29 | opabbidv 4940 |
. . . . . 6
⊢ (𝑔 = 𝐺 → {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}) |
31 | 6, 30 | mpteq12dv 4957 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑑 ∈ ran (LineG‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))}) = (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))})) |
32 | | df-hpg 26068 |
. . . . 5
⊢ hpG =
(𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))})) |
33 | 4 | fvexi 6448 |
. . . . . . 7
⊢ 𝐿 ∈ V |
34 | 33 | rnex 7363 |
. . . . . 6
⊢ ran 𝐿 ∈ V |
35 | 34 | mptex 6743 |
. . . . 5
⊢ (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}) ∈ V |
36 | 31, 32, 35 | fvmpt 6530 |
. . . 4
⊢ (𝐺 ∈ V →
(hpG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))})) |
37 | 1, 2, 36 | 3syl 18 |
. . 3
⊢ (𝜑 → (hpG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))})) |
38 | | difeq2 3950 |
. . . . . . . . . 10
⊢ (𝑑 = 𝐷 → (𝑃 ∖ 𝑑) = (𝑃 ∖ 𝐷)) |
39 | 38 | eleq2d 2893 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑎 ∈ (𝑃 ∖ 𝑑) ↔ 𝑎 ∈ (𝑃 ∖ 𝐷))) |
40 | 38 | eleq2d 2893 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑐 ∈ (𝑃 ∖ 𝑑) ↔ 𝑐 ∈ (𝑃 ∖ 𝐷))) |
41 | 39, 40 | anbi12d 626 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ↔ (𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
42 | | id 22 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → 𝑑 = 𝐷) |
43 | 42 | rexeqdv 3358 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐))) |
44 | 41, 43 | anbi12d 626 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)))) |
45 | 38 | eleq2d 2893 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑏 ∈ (𝑃 ∖ 𝑑) ↔ 𝑏 ∈ (𝑃 ∖ 𝐷))) |
46 | 45, 40 | anbi12d 626 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ↔ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
47 | 42 | rexeqdv 3358 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) |
48 | 46, 47 | anbi12d 626 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → (((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)) ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
49 | 44, 48 | anbi12d 626 |
. . . . . 6
⊢ (𝑑 = 𝐷 → ((((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))))) |
50 | 49 | rexbidv 3263 |
. . . . 5
⊢ (𝑑 = 𝐷 → (∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))))) |
51 | 50 | opabbidv 4940 |
. . . 4
⊢ (𝑑 = 𝐷 → {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}) |
52 | 51 | adantl 475 |
. . 3
⊢ ((𝜑 ∧ 𝑑 = 𝐷) → {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝑑) ∧ 𝑐 ∈ (𝑃 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝐼𝑐)))} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}) |
53 | | ishpg.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
54 | | df-xp 5349 |
. . . . . 6
⊢ (𝑃 × 𝑃) = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)} |
55 | 7 | fvexi 6448 |
. . . . . . 7
⊢ 𝑃 ∈ V |
56 | 55, 55 | xpex 7224 |
. . . . . 6
⊢ (𝑃 × 𝑃) ∈ V |
57 | 54, 56 | eqeltrri 2904 |
. . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)} ∈ V |
58 | | eldifi 3960 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (𝑃 ∖ 𝐷) → 𝑎 ∈ 𝑃) |
59 | | eldifi 3960 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ (𝑃 ∖ 𝐷) → 𝑏 ∈ 𝑃) |
60 | 58, 59 | anim12i 608 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
61 | 60 | adantrr 710 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
62 | 61 | adantlr 708 |
. . . . . . . . 9
⊢ (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
63 | 62 | adantlr 708 |
. . . . . . . 8
⊢ ((((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
64 | 63 | adantrr 710 |
. . . . . . 7
⊢ ((((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
65 | 64 | rexlimivw 3239 |
. . . . . 6
⊢
(∃𝑐 ∈
𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) → (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) |
66 | 65 | ssopab2i 5230 |
. . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ⊆ {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)} |
67 | 57, 66 | ssexi 5029 |
. . . 4
⊢
{〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ∈ V |
68 | 67 | a1i 11 |
. . 3
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ∈ V) |
69 | 37, 52, 53, 68 | fvmptd 6536 |
. 2
⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}) |
70 | | vex 3418 |
. . . . . . 7
⊢ 𝑎 ∈ V |
71 | | vex 3418 |
. . . . . . 7
⊢ 𝑐 ∈ V |
72 | | eleq1w 2890 |
. . . . . . . . 9
⊢ (𝑒 = 𝑎 → (𝑒 ∈ (𝑃 ∖ 𝐷) ↔ 𝑎 ∈ (𝑃 ∖ 𝐷))) |
73 | 72 | anbi1d 625 |
. . . . . . . 8
⊢ (𝑒 = 𝑎 → ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)))) |
74 | | oveq1 6913 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑎 → (𝑒𝐼𝑓) = (𝑎𝐼𝑓)) |
75 | 74 | eleq2d 2893 |
. . . . . . . . 9
⊢ (𝑒 = 𝑎 → (𝑡 ∈ (𝑒𝐼𝑓) ↔ 𝑡 ∈ (𝑎𝐼𝑓))) |
76 | 75 | rexbidv 3263 |
. . . . . . . 8
⊢ (𝑒 = 𝑎 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓))) |
77 | 73, 76 | anbi12d 626 |
. . . . . . 7
⊢ (𝑒 = 𝑎 → (((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓)) ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓)))) |
78 | | eleq1w 2890 |
. . . . . . . . 9
⊢ (𝑓 = 𝑐 → (𝑓 ∈ (𝑃 ∖ 𝐷) ↔ 𝑐 ∈ (𝑃 ∖ 𝐷))) |
79 | 78 | anbi2d 624 |
. . . . . . . 8
⊢ (𝑓 = 𝑐 → ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
80 | | oveq2 6914 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑐 → (𝑎𝐼𝑓) = (𝑎𝐼𝑐)) |
81 | 80 | eleq2d 2893 |
. . . . . . . . 9
⊢ (𝑓 = 𝑐 → (𝑡 ∈ (𝑎𝐼𝑓) ↔ 𝑡 ∈ (𝑎𝐼𝑐))) |
82 | 81 | rexbidv 3263 |
. . . . . . . 8
⊢ (𝑓 = 𝑐 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐))) |
83 | 79, 82 | anbi12d 626 |
. . . . . . 7
⊢ (𝑓 = 𝑐 → (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑓)) ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)))) |
84 | | ishpg.o |
. . . . . . . 8
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
85 | | simpl 476 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → 𝑎 = 𝑒) |
86 | 85 | eleq1d 2892 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑎 ∈ (𝑃 ∖ 𝐷) ↔ 𝑒 ∈ (𝑃 ∖ 𝐷))) |
87 | | simpr 479 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → 𝑏 = 𝑓) |
88 | 87 | eleq1d 2892 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑏 ∈ (𝑃 ∖ 𝐷) ↔ 𝑓 ∈ (𝑃 ∖ 𝐷))) |
89 | 86, 88 | anbi12d 626 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)))) |
90 | | oveq12 6915 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑎𝐼𝑏) = (𝑒𝐼𝑓)) |
91 | 90 | eleq2d 2893 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑡 ∈ (𝑒𝐼𝑓))) |
92 | 91 | rexbidv 3263 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓))) |
93 | 89, 92 | anbi12d 626 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑒 ∧ 𝑏 = 𝑓) → (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓)))) |
94 | 93 | cbvopabv 4946 |
. . . . . . . 8
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓))} |
95 | 84, 94 | eqtri 2850 |
. . . . . . 7
⊢ 𝑂 = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓))} |
96 | 70, 71, 77, 83, 95 | brab 5225 |
. . . . . 6
⊢ (𝑎𝑂𝑐 ↔ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐))) |
97 | | vex 3418 |
. . . . . . 7
⊢ 𝑏 ∈ V |
98 | | eleq1w 2890 |
. . . . . . . . 9
⊢ (𝑒 = 𝑏 → (𝑒 ∈ (𝑃 ∖ 𝐷) ↔ 𝑏 ∈ (𝑃 ∖ 𝐷))) |
99 | 98 | anbi1d 625 |
. . . . . . . 8
⊢ (𝑒 = 𝑏 → ((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)))) |
100 | | oveq1 6913 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑏 → (𝑒𝐼𝑓) = (𝑏𝐼𝑓)) |
101 | 100 | eleq2d 2893 |
. . . . . . . . 9
⊢ (𝑒 = 𝑏 → (𝑡 ∈ (𝑒𝐼𝑓) ↔ 𝑡 ∈ (𝑏𝐼𝑓))) |
102 | 101 | rexbidv 3263 |
. . . . . . . 8
⊢ (𝑒 = 𝑏 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓))) |
103 | 99, 102 | anbi12d 626 |
. . . . . . 7
⊢ (𝑒 = 𝑏 → (((𝑒 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑒𝐼𝑓)) ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓)))) |
104 | 78 | anbi2d 624 |
. . . . . . . 8
⊢ (𝑓 = 𝑐 → ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)))) |
105 | | oveq2 6914 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑐 → (𝑏𝐼𝑓) = (𝑏𝐼𝑐)) |
106 | 105 | eleq2d 2893 |
. . . . . . . . 9
⊢ (𝑓 = 𝑐 → (𝑡 ∈ (𝑏𝐼𝑓) ↔ 𝑡 ∈ (𝑏𝐼𝑐))) |
107 | 106 | rexbidv 3263 |
. . . . . . . 8
⊢ (𝑓 = 𝑐 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) |
108 | 104, 107 | anbi12d 626 |
. . . . . . 7
⊢ (𝑓 = 𝑐 → (((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑓 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑓)) ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
109 | 97, 71, 103, 108, 95 | brab 5225 |
. . . . . 6
⊢ (𝑏𝑂𝑐 ↔ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐))) |
110 | 96, 109 | anbi12i 622 |
. . . . 5
⊢ ((𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
111 | 110 | rexbii 3252 |
. . . 4
⊢
(∃𝑐 ∈
𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))) |
112 | 111 | opabbii 4941 |
. . 3
⊢
{〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} |
113 | 112 | a1i 11 |
. 2
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃 ∖ 𝐷) ∧ 𝑐 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}) |
114 | 69, 113 | eqtr4d 2865 |
1
⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)}) |