HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shel Structured version   Visualization version   GIF version

Theorem shel 31146
Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.)
Assertion
Ref Expression
shel ((𝐻S𝐴𝐻) → 𝐴 ∈ ℋ)

Proof of Theorem shel
StepHypRef Expression
1 shss 31145 . 2 (𝐻S𝐻 ⊆ ℋ)
21sselda 3948 1 ((𝐻S𝐴𝐻) → 𝐴 ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  chba 30854   S csh 30863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-hilex 30934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646  df-cnv 5648  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-sh 31142
This theorem is referenced by:  shuni  31235  shsel3  31250  shscom  31254  shsel1  31256  elspancl  31272  pjpjpre  31354  spansnss  31506  sh1dle  32286
  Copyright terms: Public domain W3C validator