Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shel | Structured version Visualization version GIF version |
Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shel | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shss 29926 | . 2 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
2 | 1 | sselda 3939 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2106 ℋchba 29635 Sℋ csh 29644 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5251 ax-hilex 29715 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3406 df-v 3445 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-br 5101 df-opab 5163 df-xp 5633 df-cnv 5635 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-sh 29923 |
This theorem is referenced by: shuni 30016 shsel3 30031 shscom 30035 shsel1 30037 elspancl 30053 pjpjpre 30135 spansnss 30287 sh1dle 31067 |
Copyright terms: Public domain | W3C validator |