HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsel3 Structured version   Visualization version   GIF version

Theorem shsel3 31259
Description: Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.)
Assertion
Ref Expression
shsel3 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem shsel3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 shsel 31258 . 2 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑧𝐵 𝐶 = (𝑥 + 𝑧)))
2 id 22 . . . . . . 7 (𝐶 = (𝑥 + 𝑧) → 𝐶 = (𝑥 + 𝑧))
3 shel 31155 . . . . . . . . . 10 ((𝐴S𝑥𝐴) → 𝑥 ∈ ℋ)
4 shel 31155 . . . . . . . . . 10 ((𝐵S𝑧𝐵) → 𝑧 ∈ ℋ)
5 hvaddsubval 30977 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
63, 4, 5syl2an 596 . . . . . . . . 9 (((𝐴S𝑥𝐴) ∧ (𝐵S𝑧𝐵)) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
76an4s 660 . . . . . . . 8 (((𝐴S𝐵S ) ∧ (𝑥𝐴𝑧𝐵)) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
87anassrs 467 . . . . . . 7 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
92, 8sylan9eqr 2786 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) ∧ 𝐶 = (𝑥 + 𝑧)) → 𝐶 = (𝑥 (-1 · 𝑧)))
10 neg1cn 12113 . . . . . . . . . 10 -1 ∈ ℂ
11 shmulcl 31162 . . . . . . . . . 10 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
1210, 11mp3an2 1451 . . . . . . . . 9 ((𝐵S𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
1312adantll 714 . . . . . . . 8 (((𝐴S𝐵S ) ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
1413adantlr 715 . . . . . . 7 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
15 oveq2 7357 . . . . . . . 8 (𝑦 = (-1 · 𝑧) → (𝑥 𝑦) = (𝑥 (-1 · 𝑧)))
1615rspceeqv 3600 . . . . . . 7 (((-1 · 𝑧) ∈ 𝐵𝐶 = (𝑥 (-1 · 𝑧))) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦))
1714, 16sylan 580 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) ∧ 𝐶 = (𝑥 (-1 · 𝑧))) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦))
189, 17syldan 591 . . . . 5 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) ∧ 𝐶 = (𝑥 + 𝑧)) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦))
1918rexlimdva2 3132 . . . 4 (((𝐴S𝐵S ) ∧ 𝑥𝐴) → (∃𝑧𝐵 𝐶 = (𝑥 + 𝑧) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦)))
20 id 22 . . . . . . 7 (𝐶 = (𝑥 𝑦) → 𝐶 = (𝑥 𝑦))
21 shel 31155 . . . . . . . . . 10 ((𝐵S𝑦𝐵) → 𝑦 ∈ ℋ)
22 hvsubval 30960 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
233, 21, 22syl2an 596 . . . . . . . . 9 (((𝐴S𝑥𝐴) ∧ (𝐵S𝑦𝐵)) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
2423an4s 660 . . . . . . . 8 (((𝐴S𝐵S ) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
2524anassrs 467 . . . . . . 7 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
2620, 25sylan9eqr 2786 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝐶 = (𝑥 𝑦)) → 𝐶 = (𝑥 + (-1 · 𝑦)))
27 shmulcl 31162 . . . . . . . . . 10 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
2810, 27mp3an2 1451 . . . . . . . . 9 ((𝐵S𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
2928adantll 714 . . . . . . . 8 (((𝐴S𝐵S ) ∧ 𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
3029adantlr 715 . . . . . . 7 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
31 oveq2 7357 . . . . . . . 8 (𝑧 = (-1 · 𝑦) → (𝑥 + 𝑧) = (𝑥 + (-1 · 𝑦)))
3231rspceeqv 3600 . . . . . . 7 (((-1 · 𝑦) ∈ 𝐵𝐶 = (𝑥 + (-1 · 𝑦))) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧))
3330, 32sylan 580 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝐶 = (𝑥 + (-1 · 𝑦))) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧))
3426, 33syldan 591 . . . . 5 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝐶 = (𝑥 𝑦)) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧))
3534rexlimdva2 3132 . . . 4 (((𝐴S𝐵S ) ∧ 𝑥𝐴) → (∃𝑦𝐵 𝐶 = (𝑥 𝑦) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧)))
3619, 35impbid 212 . . 3 (((𝐴S𝐵S ) ∧ 𝑥𝐴) → (∃𝑧𝐵 𝐶 = (𝑥 + 𝑧) ↔ ∃𝑦𝐵 𝐶 = (𝑥 𝑦)))
3736rexbidva 3151 . 2 ((𝐴S𝐵S ) → (∃𝑥𝐴𝑧𝐵 𝐶 = (𝑥 + 𝑧) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
381, 37bitrd 279 1 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7349  cc 11007  1c1 11010  -cneg 11348  chba 30863   + cva 30864   · csm 30865   cmv 30869   S csh 30872   + cph 30875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr2 30953  ax-hvmul0 30954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349  df-neg 11350  df-grpo 30437  df-ablo 30489  df-hvsub 30915  df-sh 31151  df-shs 31252
This theorem is referenced by:  pjimai  32120
  Copyright terms: Public domain W3C validator