HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsel3 Structured version   Visualization version   GIF version

Theorem shsel3 31334
Description: Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.)
Assertion
Ref Expression
shsel3 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem shsel3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 shsel 31333 . 2 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑧𝐵 𝐶 = (𝑥 + 𝑧)))
2 id 22 . . . . . . 7 (𝐶 = (𝑥 + 𝑧) → 𝐶 = (𝑥 + 𝑧))
3 shel 31230 . . . . . . . . . 10 ((𝐴S𝑥𝐴) → 𝑥 ∈ ℋ)
4 shel 31230 . . . . . . . . . 10 ((𝐵S𝑧𝐵) → 𝑧 ∈ ℋ)
5 hvaddsubval 31052 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
63, 4, 5syl2an 596 . . . . . . . . 9 (((𝐴S𝑥𝐴) ∧ (𝐵S𝑧𝐵)) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
76an4s 660 . . . . . . . 8 (((𝐴S𝐵S ) ∧ (𝑥𝐴𝑧𝐵)) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
87anassrs 467 . . . . . . 7 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
92, 8sylan9eqr 2799 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) ∧ 𝐶 = (𝑥 + 𝑧)) → 𝐶 = (𝑥 (-1 · 𝑧)))
10 neg1cn 12380 . . . . . . . . . 10 -1 ∈ ℂ
11 shmulcl 31237 . . . . . . . . . 10 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
1210, 11mp3an2 1451 . . . . . . . . 9 ((𝐵S𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
1312adantll 714 . . . . . . . 8 (((𝐴S𝐵S ) ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
1413adantlr 715 . . . . . . 7 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
15 oveq2 7439 . . . . . . . 8 (𝑦 = (-1 · 𝑧) → (𝑥 𝑦) = (𝑥 (-1 · 𝑧)))
1615rspceeqv 3645 . . . . . . 7 (((-1 · 𝑧) ∈ 𝐵𝐶 = (𝑥 (-1 · 𝑧))) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦))
1714, 16sylan 580 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) ∧ 𝐶 = (𝑥 (-1 · 𝑧))) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦))
189, 17syldan 591 . . . . 5 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) ∧ 𝐶 = (𝑥 + 𝑧)) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦))
1918rexlimdva2 3157 . . . 4 (((𝐴S𝐵S ) ∧ 𝑥𝐴) → (∃𝑧𝐵 𝐶 = (𝑥 + 𝑧) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦)))
20 id 22 . . . . . . 7 (𝐶 = (𝑥 𝑦) → 𝐶 = (𝑥 𝑦))
21 shel 31230 . . . . . . . . . 10 ((𝐵S𝑦𝐵) → 𝑦 ∈ ℋ)
22 hvsubval 31035 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
233, 21, 22syl2an 596 . . . . . . . . 9 (((𝐴S𝑥𝐴) ∧ (𝐵S𝑦𝐵)) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
2423an4s 660 . . . . . . . 8 (((𝐴S𝐵S ) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
2524anassrs 467 . . . . . . 7 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
2620, 25sylan9eqr 2799 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝐶 = (𝑥 𝑦)) → 𝐶 = (𝑥 + (-1 · 𝑦)))
27 shmulcl 31237 . . . . . . . . . 10 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
2810, 27mp3an2 1451 . . . . . . . . 9 ((𝐵S𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
2928adantll 714 . . . . . . . 8 (((𝐴S𝐵S ) ∧ 𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
3029adantlr 715 . . . . . . 7 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
31 oveq2 7439 . . . . . . . 8 (𝑧 = (-1 · 𝑦) → (𝑥 + 𝑧) = (𝑥 + (-1 · 𝑦)))
3231rspceeqv 3645 . . . . . . 7 (((-1 · 𝑦) ∈ 𝐵𝐶 = (𝑥 + (-1 · 𝑦))) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧))
3330, 32sylan 580 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝐶 = (𝑥 + (-1 · 𝑦))) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧))
3426, 33syldan 591 . . . . 5 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝐶 = (𝑥 𝑦)) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧))
3534rexlimdva2 3157 . . . 4 (((𝐴S𝐵S ) ∧ 𝑥𝐴) → (∃𝑦𝐵 𝐶 = (𝑥 𝑦) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧)))
3619, 35impbid 212 . . 3 (((𝐴S𝐵S ) ∧ 𝑥𝐴) → (∃𝑧𝐵 𝐶 = (𝑥 + 𝑧) ↔ ∃𝑦𝐵 𝐶 = (𝑥 𝑦)))
3736rexbidva 3177 . 2 ((𝐴S𝐵S ) → (∃𝑥𝐴𝑧𝐵 𝐶 = (𝑥 + 𝑧) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
381, 37bitrd 279 1 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  (class class class)co 7431  cc 11153  1c1 11156  -cneg 11493  chba 30938   + cva 30939   · csm 30940   cmv 30944   S csh 30947   + cph 30950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr2 31028  ax-hvmul0 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-neg 11495  df-grpo 30512  df-ablo 30564  df-hvsub 30990  df-sh 31226  df-shs 31327
This theorem is referenced by:  pjimai  32195
  Copyright terms: Public domain W3C validator