HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shex Structured version   Visualization version   GIF version

Theorem shex 31244
Description: The set of subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shex S ∈ V

Proof of Theorem shex
StepHypRef Expression
1 ax-hilex 31031 . . 3 ℋ ∈ V
21pwex 5398 . 2 𝒫 ℋ ∈ V
3 shss 31242 . . . 4 (𝑥S𝑥 ⊆ ℋ)
4 velpw 4627 . . . 4 (𝑥 ∈ 𝒫 ℋ ↔ 𝑥 ⊆ ℋ)
53, 4sylibr 234 . . 3 (𝑥S𝑥 ∈ 𝒫 ℋ)
65ssriv 4012 . 2 S ⊆ 𝒫 ℋ
72, 6ssexi 5340 1 S ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488  wss 3976  𝒫 cpw 4622  chba 30951   S csh 30960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-pow 5383  ax-hilex 31031
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-sh 31239
This theorem is referenced by:  chex  31258
  Copyright terms: Public domain W3C validator