HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shex Structured version   Visualization version   GIF version

Theorem shex 31241
Description: The set of subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shex S ∈ V

Proof of Theorem shex
StepHypRef Expression
1 ax-hilex 31028 . . 3 ℋ ∈ V
21pwex 5386 . 2 𝒫 ℋ ∈ V
3 shss 31239 . . . 4 (𝑥S𝑥 ⊆ ℋ)
4 velpw 4610 . . . 4 (𝑥 ∈ 𝒫 ℋ ↔ 𝑥 ⊆ ℋ)
53, 4sylibr 234 . . 3 (𝑥S𝑥 ∈ 𝒫 ℋ)
65ssriv 3999 . 2 S ⊆ 𝒫 ℋ
72, 6ssexi 5328 1 S ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3478  wss 3963  𝒫 cpw 4605  chba 30948   S csh 30957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-pow 5371  ax-hilex 31028
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-sh 31236
This theorem is referenced by:  chex  31255
  Copyright terms: Public domain W3C validator