![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shex | Structured version Visualization version GIF version |
Description: The set of subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shex | ⊢ Sℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 31028 | . . 3 ⊢ ℋ ∈ V | |
2 | 1 | pwex 5386 | . 2 ⊢ 𝒫 ℋ ∈ V |
3 | shss 31239 | . . . 4 ⊢ (𝑥 ∈ Sℋ → 𝑥 ⊆ ℋ) | |
4 | velpw 4610 | . . . 4 ⊢ (𝑥 ∈ 𝒫 ℋ ↔ 𝑥 ⊆ ℋ) | |
5 | 3, 4 | sylibr 234 | . . 3 ⊢ (𝑥 ∈ Sℋ → 𝑥 ∈ 𝒫 ℋ) |
6 | 5 | ssriv 3999 | . 2 ⊢ Sℋ ⊆ 𝒫 ℋ |
7 | 2, 6 | ssexi 5328 | 1 ⊢ Sℋ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 𝒫 cpw 4605 ℋchba 30948 Sℋ csh 30957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-pow 5371 ax-hilex 31028 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-sh 31236 |
This theorem is referenced by: chex 31255 |
Copyright terms: Public domain | W3C validator |