HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shex Structured version   Visualization version   GIF version

Theorem shex 31190
Description: The set of subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shex S ∈ V

Proof of Theorem shex
StepHypRef Expression
1 ax-hilex 30977 . . 3 ℋ ∈ V
21pwex 5318 . 2 𝒫 ℋ ∈ V
3 shss 31188 . . . 4 (𝑥S𝑥 ⊆ ℋ)
4 velpw 4555 . . . 4 (𝑥 ∈ 𝒫 ℋ ↔ 𝑥 ⊆ ℋ)
53, 4sylibr 234 . . 3 (𝑥S𝑥 ∈ 𝒫 ℋ)
65ssriv 3938 . 2 S ⊆ 𝒫 ℋ
72, 6ssexi 5260 1 S ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  wss 3902  𝒫 cpw 4550  chba 30897   S csh 30906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-pow 5303  ax-hilex 30977
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-sh 31185
This theorem is referenced by:  chex  31204
  Copyright terms: Public domain W3C validator