Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shex | Structured version Visualization version GIF version |
Description: The set of subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shex | ⊢ Sℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 29361 | . . 3 ⊢ ℋ ∈ V | |
2 | 1 | pwex 5303 | . 2 ⊢ 𝒫 ℋ ∈ V |
3 | shss 29572 | . . . 4 ⊢ (𝑥 ∈ Sℋ → 𝑥 ⊆ ℋ) | |
4 | velpw 4538 | . . . 4 ⊢ (𝑥 ∈ 𝒫 ℋ ↔ 𝑥 ⊆ ℋ) | |
5 | 3, 4 | sylibr 233 | . . 3 ⊢ (𝑥 ∈ Sℋ → 𝑥 ∈ 𝒫 ℋ) |
6 | 5 | ssriv 3925 | . 2 ⊢ Sℋ ⊆ 𝒫 ℋ |
7 | 2, 6 | ssexi 5246 | 1 ⊢ Sℋ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 ℋchba 29281 Sℋ csh 29290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-pow 5288 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-sh 29569 |
This theorem is referenced by: chex 29588 |
Copyright terms: Public domain | W3C validator |