HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shex Structured version   Visualization version   GIF version

Theorem shex 29574
Description: The set of subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shex S ∈ V

Proof of Theorem shex
StepHypRef Expression
1 ax-hilex 29361 . . 3 ℋ ∈ V
21pwex 5303 . 2 𝒫 ℋ ∈ V
3 shss 29572 . . . 4 (𝑥S𝑥 ⊆ ℋ)
4 velpw 4538 . . . 4 (𝑥 ∈ 𝒫 ℋ ↔ 𝑥 ⊆ ℋ)
53, 4sylibr 233 . . 3 (𝑥S𝑥 ∈ 𝒫 ℋ)
65ssriv 3925 . 2 S ⊆ 𝒫 ℋ
72, 6ssexi 5246 1 S ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3432  wss 3887  𝒫 cpw 4533  chba 29281   S csh 29290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-pow 5288  ax-hilex 29361
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-sh 29569
This theorem is referenced by:  chex  29588
  Copyright terms: Public domain W3C validator