HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shex Structured version   Visualization version   GIF version

Theorem shex 31147
Description: The set of subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shex S ∈ V

Proof of Theorem shex
StepHypRef Expression
1 ax-hilex 30934 . . 3 ℋ ∈ V
21pwex 5337 . 2 𝒫 ℋ ∈ V
3 shss 31145 . . . 4 (𝑥S𝑥 ⊆ ℋ)
4 velpw 4570 . . . 4 (𝑥 ∈ 𝒫 ℋ ↔ 𝑥 ⊆ ℋ)
53, 4sylibr 234 . . 3 (𝑥S𝑥 ∈ 𝒫 ℋ)
65ssriv 3952 . 2 S ⊆ 𝒫 ℋ
72, 6ssexi 5279 1 S ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3450  wss 3916  𝒫 cpw 4565  chba 30854   S csh 30863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-pow 5322  ax-hilex 30934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646  df-cnv 5648  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-sh 31142
This theorem is referenced by:  chex  31161
  Copyright terms: Public domain W3C validator