HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shss Structured version   Visualization version   GIF version

Theorem shss 29572
Description: A subspace is a subset of Hilbert space. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
shss (𝐻S𝐻 ⊆ ℋ)

Proof of Theorem shss
StepHypRef Expression
1 issh 29570 . . 3 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
21simplbi 498 . 2 (𝐻S → (𝐻 ⊆ ℋ ∧ 0𝐻))
32simpld 495 1 (𝐻S𝐻 ⊆ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wss 3887   × cxp 5587  cima 5592  cc 10869  chba 29281   + cva 29282   · csm 29283  0c0v 29286   S csh 29290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-hilex 29361
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-sh 29569
This theorem is referenced by:  shel  29573  shex  29574  shssii  29575  shsubcl  29582  chss  29591  shsspwh  29608  hhsssh  29631  shocel  29644  shocsh  29646  ocss  29647  shocss  29648  shocorth  29654  shococss  29656  shorth  29657  shoccl  29667  shsel  29676  shintcli  29691  spanid  29709  shjval  29713  shjcl  29718  shlej1  29722  shlub  29776  chscllem2  30000  chscllem4  30002
  Copyright terms: Public domain W3C validator