| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shss | Structured version Visualization version GIF version | ||
| Description: A subspace is a subset of Hilbert space. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shss | ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issh 31189 | . . 3 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
| 2 | 1 | simplbi 497 | . 2 ⊢ (𝐻 ∈ Sℋ → (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3926 × cxp 5652 “ cima 5657 ℂcc 11127 ℋchba 30900 +ℎ cva 30901 ·ℎ csm 30902 0ℎc0v 30905 Sℋ csh 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-hilex 30980 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-sh 31188 |
| This theorem is referenced by: shel 31192 shex 31193 shssii 31194 shsubcl 31201 chss 31210 shsspwh 31227 hhsssh 31250 shocel 31263 shocsh 31265 ocss 31266 shocss 31267 shocorth 31273 shococss 31275 shorth 31276 shoccl 31286 shsel 31295 shintcli 31310 spanid 31328 shjval 31332 shjcl 31337 shlej1 31341 shlub 31395 chscllem2 31619 chscllem4 31621 |
| Copyright terms: Public domain | W3C validator |