![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shss | Structured version Visualization version GIF version |
Description: A subspace is a subset of Hilbert space. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shss | ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh 31240 | . . 3 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
2 | 1 | simplbi 497 | . 2 ⊢ (𝐻 ∈ Sℋ → (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻)) |
3 | 2 | simpld 494 | 1 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 × cxp 5698 “ cima 5703 ℂcc 11182 ℋchba 30951 +ℎ cva 30952 ·ℎ csm 30953 0ℎc0v 30956 Sℋ csh 30960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-sh 31239 |
This theorem is referenced by: shel 31243 shex 31244 shssii 31245 shsubcl 31252 chss 31261 shsspwh 31278 hhsssh 31301 shocel 31314 shocsh 31316 ocss 31317 shocss 31318 shocorth 31324 shococss 31326 shorth 31327 shoccl 31337 shsel 31346 shintcli 31361 spanid 31379 shjval 31383 shjcl 31388 shlej1 31392 shlub 31446 chscllem2 31670 chscllem4 31672 |
Copyright terms: Public domain | W3C validator |