| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shss | Structured version Visualization version GIF version | ||
| Description: A subspace is a subset of Hilbert space. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shss | ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issh 31137 | . . 3 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
| 2 | 1 | simplbi 497 | . 2 ⊢ (𝐻 ∈ Sℋ → (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 × cxp 5636 “ cima 5641 ℂcc 11066 ℋchba 30848 +ℎ cva 30849 ·ℎ csm 30850 0ℎc0v 30853 Sℋ csh 30857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-sh 31136 |
| This theorem is referenced by: shel 31140 shex 31141 shssii 31142 shsubcl 31149 chss 31158 shsspwh 31175 hhsssh 31198 shocel 31211 shocsh 31213 ocss 31214 shocss 31215 shocorth 31221 shococss 31223 shorth 31224 shoccl 31234 shsel 31243 shintcli 31258 spanid 31276 shjval 31280 shjcl 31285 shlej1 31289 shlub 31343 chscllem2 31567 chscllem4 31569 |
| Copyright terms: Public domain | W3C validator |