HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shss Structured version   Visualization version   GIF version

Theorem shss 31182
Description: A subspace is a subset of Hilbert space. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
shss (𝐻S𝐻 ⊆ ℋ)

Proof of Theorem shss
StepHypRef Expression
1 issh 31180 . . 3 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
21simplbi 497 . 2 (𝐻S → (𝐻 ⊆ ℋ ∧ 0𝐻))
32simpld 494 1 (𝐻S𝐻 ⊆ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wss 3897   × cxp 5609  cima 5614  cc 10999  chba 30891   + cva 30892   · csm 30893  0c0v 30896   S csh 30900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-hilex 30971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-sh 31179
This theorem is referenced by:  shel  31183  shex  31184  shssii  31185  shsubcl  31192  chss  31201  shsspwh  31218  hhsssh  31241  shocel  31254  shocsh  31256  ocss  31257  shocss  31258  shocorth  31264  shococss  31266  shorth  31267  shoccl  31277  shsel  31286  shintcli  31301  spanid  31319  shjval  31323  shjcl  31328  shlej1  31332  shlub  31386  chscllem2  31610  chscllem4  31612
  Copyright terms: Public domain W3C validator