Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shss | Structured version Visualization version GIF version |
Description: A subspace is a subset of Hilbert space. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shss | ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh 29570 | . . 3 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
2 | 1 | simplbi 498 | . 2 ⊢ (𝐻 ∈ Sℋ → (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻)) |
3 | 2 | simpld 495 | 1 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3887 × cxp 5587 “ cima 5592 ℂcc 10869 ℋchba 29281 +ℎ cva 29282 ·ℎ csm 29283 0ℎc0v 29286 Sℋ csh 29290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-sh 29569 |
This theorem is referenced by: shel 29573 shex 29574 shssii 29575 shsubcl 29582 chss 29591 shsspwh 29608 hhsssh 29631 shocel 29644 shocsh 29646 ocss 29647 shocss 29648 shocorth 29654 shococss 29656 shorth 29657 shoccl 29667 shsel 29676 shintcli 29691 spanid 29709 shjval 29713 shjcl 29718 shlej1 29722 shlub 29776 chscllem2 30000 chscllem4 30002 |
Copyright terms: Public domain | W3C validator |