HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shss Structured version   Visualization version   GIF version

Theorem shss 31172
Description: A subspace is a subset of Hilbert space. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
shss (𝐻S𝐻 ⊆ ℋ)

Proof of Theorem shss
StepHypRef Expression
1 issh 31170 . . 3 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
21simplbi 497 . 2 (𝐻S → (𝐻 ⊆ ℋ ∧ 0𝐻))
32simpld 494 1 (𝐻S𝐻 ⊆ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3905   × cxp 5621  cima 5626  cc 11026  chba 30881   + cva 30882   · csm 30883  0c0v 30886   S csh 30890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-hilex 30961
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-sh 31169
This theorem is referenced by:  shel  31173  shex  31174  shssii  31175  shsubcl  31182  chss  31191  shsspwh  31208  hhsssh  31231  shocel  31244  shocsh  31246  ocss  31247  shocss  31248  shocorth  31254  shococss  31256  shorth  31257  shoccl  31267  shsel  31276  shintcli  31291  spanid  31309  shjval  31313  shjcl  31318  shlej1  31322  shlub  31376  chscllem2  31600  chscllem4  31602
  Copyright terms: Public domain W3C validator