![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shss | Structured version Visualization version GIF version |
Description: A subspace is a subset of Hilbert space. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shss | ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh 31237 | . . 3 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
2 | 1 | simplbi 497 | . 2 ⊢ (𝐻 ∈ Sℋ → (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻)) |
3 | 2 | simpld 494 | 1 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ⊆ wss 3963 × cxp 5687 “ cima 5692 ℂcc 11151 ℋchba 30948 +ℎ cva 30949 ·ℎ csm 30950 0ℎc0v 30953 Sℋ csh 30957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-hilex 31028 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-sh 31236 |
This theorem is referenced by: shel 31240 shex 31241 shssii 31242 shsubcl 31249 chss 31258 shsspwh 31275 hhsssh 31298 shocel 31311 shocsh 31313 ocss 31314 shocss 31315 shocorth 31321 shococss 31323 shorth 31324 shoccl 31334 shsel 31343 shintcli 31358 spanid 31376 shjval 31380 shjcl 31385 shlej1 31389 shlub 31443 chscllem2 31667 chscllem4 31669 |
Copyright terms: Public domain | W3C validator |