| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shss | Structured version Visualization version GIF version | ||
| Description: A subspace is a subset of Hilbert space. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shss | ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issh 31110 | . . 3 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
| 2 | 1 | simplbi 497 | . 2 ⊢ (𝐻 ∈ Sℋ → (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3911 × cxp 5629 “ cima 5634 ℂcc 11042 ℋchba 30821 +ℎ cva 30822 ·ℎ csm 30823 0ℎc0v 30826 Sℋ csh 30830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-hilex 30901 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-sh 31109 |
| This theorem is referenced by: shel 31113 shex 31114 shssii 31115 shsubcl 31122 chss 31131 shsspwh 31148 hhsssh 31171 shocel 31184 shocsh 31186 ocss 31187 shocss 31188 shocorth 31194 shococss 31196 shorth 31197 shoccl 31207 shsel 31216 shintcli 31231 spanid 31249 shjval 31253 shjcl 31258 shlej1 31262 shlub 31316 chscllem2 31540 chscllem4 31542 |
| Copyright terms: Public domain | W3C validator |