Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp122 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp122 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp22 1205 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜓) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: ax5seglem3 27202 axpasch 27212 exatleN 37345 ps-2b 37423 3atlem1 37424 3atlem2 37425 3atlem4 37427 3atlem5 37428 3atlem6 37429 2llnjaN 37507 4atlem12b 37552 2lplnja 37560 dalemqea 37568 dath2 37678 lneq2at 37719 llnexchb2 37810 dalawlem1 37812 lhpexle3lem 37952 cdleme26ee 38301 cdlemg34 38653 cdlemg35 38654 cdlemg36 38655 cdlemj1 38762 cdlemj2 38763 cdlemk23-3 38843 cdlemk25-3 38845 cdlemk26b-3 38846 cdlemk26-3 38847 cdleml3N 38919 iscnrm3llem2 46132 |
Copyright terms: Public domain | W3C validator |