| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp122 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp122 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp22 1208 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28915 axpasch 28925 exatleN 39428 ps-2b 39506 3atlem1 39507 3atlem2 39508 3atlem4 39510 3atlem5 39511 3atlem6 39512 2llnjaN 39590 4atlem12b 39635 2lplnja 39643 dalemqea 39651 dath2 39761 lneq2at 39802 llnexchb2 39893 dalawlem1 39895 lhpexle3lem 40035 cdleme26ee 40384 cdlemg34 40736 cdlemg35 40737 cdlemg36 40738 cdlemj1 40845 cdlemj2 40846 cdlemk23-3 40926 cdlemk25-3 40928 cdlemk26b-3 40929 cdlemk26-3 40930 cdleml3N 41002 iscnrm3llem2 48891 |
| Copyright terms: Public domain | W3C validator |