MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp122 Structured version   Visualization version   GIF version

Theorem simp122 1304
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp122 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜓)

Proof of Theorem simp122
StepHypRef Expression
1 simp22 1205 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜓)
213ad2ant1 1131 1 (((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1087
This theorem is referenced by:  ax5seglem3  28456  axpasch  28466  exatleN  38578  ps-2b  38656  3atlem1  38657  3atlem2  38658  3atlem4  38660  3atlem5  38661  3atlem6  38662  2llnjaN  38740  4atlem12b  38785  2lplnja  38793  dalemqea  38801  dath2  38911  lneq2at  38952  llnexchb2  39043  dalawlem1  39045  lhpexle3lem  39185  cdleme26ee  39534  cdlemg34  39886  cdlemg35  39887  cdlemg36  39888  cdlemj1  39995  cdlemj2  39996  cdlemk23-3  40076  cdlemk25-3  40078  cdlemk26b-3  40079  cdlemk26-3  40080  cdleml3N  40152  iscnrm3llem2  47670
  Copyright terms: Public domain W3C validator