| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp122 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp122 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp22 1208 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28834 axpasch 28844 exatleN 39371 ps-2b 39449 3atlem1 39450 3atlem2 39451 3atlem4 39453 3atlem5 39454 3atlem6 39455 2llnjaN 39533 4atlem12b 39578 2lplnja 39586 dalemqea 39594 dath2 39704 lneq2at 39745 llnexchb2 39836 dalawlem1 39838 lhpexle3lem 39978 cdleme26ee 40327 cdlemg34 40679 cdlemg35 40680 cdlemg36 40681 cdlemj1 40788 cdlemj2 40789 cdlemk23-3 40869 cdlemk25-3 40871 cdlemk26b-3 40872 cdlemk26-3 40873 cdleml3N 40945 iscnrm3llem2 48911 |
| Copyright terms: Public domain | W3C validator |