![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp122 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp122 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp22 1204 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜓) | |
2 | 1 | 3ad2ant1 1130 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1086 |
This theorem is referenced by: ax5seglem3 28624 axpasch 28634 exatleN 38731 ps-2b 38809 3atlem1 38810 3atlem2 38811 3atlem4 38813 3atlem5 38814 3atlem6 38815 2llnjaN 38893 4atlem12b 38938 2lplnja 38946 dalemqea 38954 dath2 39064 lneq2at 39105 llnexchb2 39196 dalawlem1 39198 lhpexle3lem 39338 cdleme26ee 39687 cdlemg34 40039 cdlemg35 40040 cdlemg36 40041 cdlemj1 40148 cdlemj2 40149 cdlemk23-3 40229 cdlemk25-3 40231 cdlemk26b-3 40232 cdlemk26-3 40233 cdleml3N 40305 iscnrm3llem2 47737 |
Copyright terms: Public domain | W3C validator |