Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp2lr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2lr | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 765 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant2 1132 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: fpr3g 8077 tfrlem5 8187 omeu 8383 expmordi 13829 4sqlem18 16607 vdwlem10 16635 mvrf1 21138 mdetuni0 21714 mdetmul 21716 tsmsxp 23250 ax5seglem3 27242 btwnconn1lem1 34358 btwnconn1lem3 34360 btwnconn1lem4 34361 btwnconn1lem5 34362 btwnconn1lem6 34363 btwnconn1lem7 34364 linethru 34424 lshpkrlem6 37098 athgt 37439 2llnjN 37550 dalaw 37869 cdlemb2 38024 4atexlemex6 38057 cdleme01N 38204 cdleme0ex2N 38207 cdleme7aa 38225 cdleme7e 38230 cdlemg33c0 38685 dihmeetlem3N 39288 pellex 40615 |
Copyright terms: Public domain | W3C validator |