| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2lr | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fpr3g 8292 tfrlem5 8402 omeu 8605 expmordi 14189 4sqlem18 16982 vdwlem10 17010 mvrf1 21960 mdetuni0 22575 mdetmul 22577 tsmsxp 24109 ax5seglem3 28876 btwnconn1lem1 36047 btwnconn1lem3 36049 btwnconn1lem4 36050 btwnconn1lem5 36051 btwnconn1lem6 36052 btwnconn1lem7 36053 linethru 36113 lshpkrlem6 39075 athgt 39417 2llnjN 39528 dalaw 39847 cdlemb2 40002 4atexlemex6 40035 cdleme01N 40182 cdleme0ex2N 40185 cdleme7aa 40203 cdleme7e 40208 cdlemg33c0 40663 dihmeetlem3N 41266 pellex 42809 |
| Copyright terms: Public domain | W3C validator |