| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2lr | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fpr3g 8267 tfrlem5 8351 omeu 8552 expmordi 14139 4sqlem18 16940 vdwlem10 16968 mvrf1 21902 mdetuni0 22515 mdetmul 22517 tsmsxp 24049 ax5seglem3 28865 btwnconn1lem1 36082 btwnconn1lem3 36084 btwnconn1lem4 36085 btwnconn1lem5 36086 btwnconn1lem6 36087 btwnconn1lem7 36088 linethru 36148 lshpkrlem6 39115 athgt 39457 2llnjN 39568 dalaw 39887 cdlemb2 40042 4atexlemex6 40075 cdleme01N 40222 cdleme0ex2N 40225 cdleme7aa 40243 cdleme7e 40248 cdlemg33c0 40703 dihmeetlem3N 41306 pellex 42830 |
| Copyright terms: Public domain | W3C validator |