| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2lr | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fpr3g 8264 tfrlem5 8348 omeu 8549 expmordi 14132 4sqlem18 16933 vdwlem10 16961 mvrf1 21895 mdetuni0 22508 mdetmul 22510 tsmsxp 24042 ax5seglem3 28858 btwnconn1lem1 36075 btwnconn1lem3 36077 btwnconn1lem4 36078 btwnconn1lem5 36079 btwnconn1lem6 36080 btwnconn1lem7 36081 linethru 36141 lshpkrlem6 39108 athgt 39450 2llnjN 39561 dalaw 39880 cdlemb2 40035 4atexlemex6 40068 cdleme01N 40215 cdleme0ex2N 40218 cdleme7aa 40236 cdleme7e 40241 cdlemg33c0 40696 dihmeetlem3N 41299 pellex 42823 |
| Copyright terms: Public domain | W3C validator |