Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp2lr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2lr | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 765 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant2 1132 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: fpr3g 8072 tfrlem5 8182 omeu 8378 expmordi 13813 4sqlem18 16591 vdwlem10 16619 mvrf1 21104 mdetuni0 21678 mdetmul 21680 tsmsxp 23214 ax5seglem3 27202 btwnconn1lem1 34316 btwnconn1lem3 34318 btwnconn1lem4 34319 btwnconn1lem5 34320 btwnconn1lem6 34321 btwnconn1lem7 34322 linethru 34382 lshpkrlem6 37056 athgt 37397 2llnjN 37508 dalaw 37827 cdlemb2 37982 4atexlemex6 38015 cdleme01N 38162 cdleme0ex2N 38165 cdleme7aa 38183 cdleme7e 38188 cdlemg33c0 38643 dihmeetlem3N 39246 pellex 40573 |
Copyright terms: Public domain | W3C validator |