| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2lr | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fpr3g 8215 tfrlem5 8299 omeu 8500 expmordi 14071 4sqlem18 16871 vdwlem10 16899 mvrf1 21921 mdetuni0 22534 mdetmul 22536 tsmsxp 24068 ax5seglem3 28907 btwnconn1lem1 36120 btwnconn1lem3 36122 btwnconn1lem4 36123 btwnconn1lem5 36124 btwnconn1lem6 36125 btwnconn1lem7 36126 linethru 36186 lshpkrlem6 39153 athgt 39494 2llnjN 39605 dalaw 39924 cdlemb2 40079 4atexlemex6 40112 cdleme01N 40259 cdleme0ex2N 40262 cdleme7aa 40280 cdleme7e 40285 cdlemg33c0 40740 dihmeetlem3N 41343 pellex 42867 |
| Copyright terms: Public domain | W3C validator |