| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2lr | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fpr3g 8225 tfrlem5 8309 omeu 8510 expmordi 14092 4sqlem18 16892 vdwlem10 16920 mvrf1 21911 mdetuni0 22524 mdetmul 22526 tsmsxp 24058 ax5seglem3 28894 btwnconn1lem1 36060 btwnconn1lem3 36062 btwnconn1lem4 36063 btwnconn1lem5 36064 btwnconn1lem6 36065 btwnconn1lem7 36066 linethru 36126 lshpkrlem6 39093 athgt 39435 2llnjN 39546 dalaw 39865 cdlemb2 40020 4atexlemex6 40053 cdleme01N 40200 cdleme0ex2N 40203 cdleme7aa 40221 cdleme7e 40226 cdlemg33c0 40681 dihmeetlem3N 41284 pellex 42808 |
| Copyright terms: Public domain | W3C validator |