| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2lr | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fpr3g 8221 tfrlem5 8305 omeu 8506 expmordi 14076 4sqlem18 16876 vdwlem10 16904 mvrf1 21924 mdetuni0 22537 mdetmul 22539 tsmsxp 24071 ax5seglem3 28911 btwnconn1lem1 36152 btwnconn1lem3 36154 btwnconn1lem4 36155 btwnconn1lem5 36156 btwnconn1lem6 36157 btwnconn1lem7 36158 linethru 36218 lshpkrlem6 39234 athgt 39575 2llnjN 39686 dalaw 40005 cdlemb2 40160 4atexlemex6 40193 cdleme01N 40340 cdleme0ex2N 40343 cdleme7aa 40361 cdleme7e 40366 cdlemg33c0 40821 dihmeetlem3N 41424 pellex 42952 |
| Copyright terms: Public domain | W3C validator |