![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp2lr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2lr | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: fpr3g 8326 tfrlem5 8436 omeu 8641 expmordi 14217 4sqlem18 17009 vdwlem10 17037 mvrf1 22029 mdetuni0 22648 mdetmul 22650 tsmsxp 24184 ax5seglem3 28964 btwnconn1lem1 36051 btwnconn1lem3 36053 btwnconn1lem4 36054 btwnconn1lem5 36055 btwnconn1lem6 36056 btwnconn1lem7 36057 linethru 36117 lshpkrlem6 39071 athgt 39413 2llnjN 39524 dalaw 39843 cdlemb2 39998 4atexlemex6 40031 cdleme01N 40178 cdleme0ex2N 40181 cdleme7aa 40199 cdleme7e 40204 cdlemg33c0 40659 dihmeetlem3N 41262 pellex 42791 |
Copyright terms: Public domain | W3C validator |