| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2lr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2lr | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: fpr3g 8284 tfrlem5 8394 omeu 8597 expmordi 14185 4sqlem18 16982 vdwlem10 17010 mvrf1 21946 mdetuni0 22559 mdetmul 22561 tsmsxp 24093 ax5seglem3 28910 btwnconn1lem1 36105 btwnconn1lem3 36107 btwnconn1lem4 36108 btwnconn1lem5 36109 btwnconn1lem6 36110 btwnconn1lem7 36111 linethru 36171 lshpkrlem6 39133 athgt 39475 2llnjN 39586 dalaw 39905 cdlemb2 40060 4atexlemex6 40093 cdleme01N 40240 cdleme0ex2N 40243 cdleme7aa 40261 cdleme7e 40266 cdlemg33c0 40721 dihmeetlem3N 41324 pellex 42858 |
| Copyright terms: Public domain | W3C validator |