Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp2lr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2lr | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant2 1133 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: fpr3g 8101 tfrlem5 8211 omeu 8416 expmordi 13885 4sqlem18 16663 vdwlem10 16691 mvrf1 21194 mdetuni0 21770 mdetmul 21772 tsmsxp 23306 ax5seglem3 27299 btwnconn1lem1 34389 btwnconn1lem3 34391 btwnconn1lem4 34392 btwnconn1lem5 34393 btwnconn1lem6 34394 btwnconn1lem7 34395 linethru 34455 lshpkrlem6 37129 athgt 37470 2llnjN 37581 dalaw 37900 cdlemb2 38055 4atexlemex6 38088 cdleme01N 38235 cdleme0ex2N 38238 cdleme7aa 38256 cdleme7e 38261 cdlemg33c0 38716 dihmeetlem3N 39319 pellex 40657 |
Copyright terms: Public domain | W3C validator |