MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem10 Structured version   Visualization version   GIF version

Theorem vdwlem10 16937
Description: Lemma for vdw 16941. Set up secondary induction on 𝑀. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem9.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem9.s (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
vdwlem10.m (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
vdwlem10 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
Distinct variable groups:   𝜑,𝑛,𝑓   𝑓,𝑠,𝐾,𝑛   𝑓,𝑀,𝑛   𝑅,𝑓,𝑛,𝑠   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑠)   𝑀(𝑠)

Proof of Theorem vdwlem10
Dummy variables 𝑎 𝑐 𝑑 𝑔 𝑘 𝑚 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwlem10.m . 2 (𝜑𝑀 ∈ ℕ)
2 opeq1 4833 . . . . . . 7 (𝑥 = 1 → ⟨𝑥, 𝐾⟩ = ⟨1, 𝐾⟩)
32breq1d 5112 . . . . . 6 (𝑥 = 1 → (⟨𝑥, 𝐾⟩ PolyAP 𝑓 ↔ ⟨1, 𝐾⟩ PolyAP 𝑓))
43orbi1d 916 . . . . 5 (𝑥 = 1 → ((⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
54rexralbidv 3201 . . . 4 (𝑥 = 1 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
65imbi2d 340 . . 3 (𝑥 = 1 → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
7 opeq1 4833 . . . . . . 7 (𝑥 = 𝑚 → ⟨𝑥, 𝐾⟩ = ⟨𝑚, 𝐾⟩)
87breq1d 5112 . . . . . 6 (𝑥 = 𝑚 → (⟨𝑥, 𝐾⟩ PolyAP 𝑓 ↔ ⟨𝑚, 𝐾⟩ PolyAP 𝑓))
98orbi1d 916 . . . . 5 (𝑥 = 𝑚 → ((⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
109rexralbidv 3201 . . . 4 (𝑥 = 𝑚 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
1110imbi2d 340 . . 3 (𝑥 = 𝑚 → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
12 opeq1 4833 . . . . . . 7 (𝑥 = (𝑚 + 1) → ⟨𝑥, 𝐾⟩ = ⟨(𝑚 + 1), 𝐾⟩)
1312breq1d 5112 . . . . . 6 (𝑥 = (𝑚 + 1) → (⟨𝑥, 𝐾⟩ PolyAP 𝑓 ↔ ⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓))
1413orbi1d 916 . . . . 5 (𝑥 = (𝑚 + 1) → ((⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
1514rexralbidv 3201 . . . 4 (𝑥 = (𝑚 + 1) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
1615imbi2d 340 . . 3 (𝑥 = (𝑚 + 1) → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
17 opeq1 4833 . . . . . . 7 (𝑥 = 𝑀 → ⟨𝑥, 𝐾⟩ = ⟨𝑀, 𝐾⟩)
1817breq1d 5112 . . . . . 6 (𝑥 = 𝑀 → (⟨𝑥, 𝐾⟩ PolyAP 𝑓 ↔ ⟨𝑀, 𝐾⟩ PolyAP 𝑓))
1918orbi1d 916 . . . . 5 (𝑥 = 𝑀 → ((⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
2019rexralbidv 3201 . . . 4 (𝑥 = 𝑀 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
2120imbi2d 340 . . 3 (𝑥 = 𝑀 → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
22 oveq1 7376 . . . . . . . 8 (𝑠 = 𝑅 → (𝑠m (1...𝑛)) = (𝑅m (1...𝑛)))
2322raleqdv 3296 . . . . . . 7 (𝑠 = 𝑅 → (∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
2423rexbidv 3157 . . . . . 6 (𝑠 = 𝑅 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
25 vdwlem9.s . . . . . 6 (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
26 vdw.r . . . . . 6 (𝜑𝑅 ∈ Fin)
2724, 25, 26rspcdva 3586 . . . . 5 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓)
28 oveq2 7377 . . . . . . . 8 (𝑛 = 𝑤 → (1...𝑛) = (1...𝑤))
2928oveq2d 7385 . . . . . . 7 (𝑛 = 𝑤 → (𝑅m (1...𝑛)) = (𝑅m (1...𝑤)))
3029raleqdv 3296 . . . . . 6 (𝑛 = 𝑤 → (∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑓))
3130cbvrexvw 3214 . . . . 5 (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑤 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑓)
3227, 31sylib 218 . . . 4 (𝜑 → ∃𝑤 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑓)
33 breq2 5106 . . . . . . 7 (𝑓 = 𝑔 → (𝐾 MonoAP 𝑓𝐾 MonoAP 𝑔))
3433cbvralvw 3213 . . . . . 6 (∀𝑓 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑔)
35 2nn 12235 . . . . . . . 8 2 ∈ ℕ
36 simpr 484 . . . . . . . 8 ((𝜑𝑤 ∈ ℕ) → 𝑤 ∈ ℕ)
37 nnmulcl 12186 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (2 · 𝑤) ∈ ℕ)
3835, 36, 37sylancr 587 . . . . . . 7 ((𝜑𝑤 ∈ ℕ) → (2 · 𝑤) ∈ ℕ)
3926adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℕ) → 𝑅 ∈ Fin)
40 ovex 7402 . . . . . . . . . . 11 (1...(2 · 𝑤)) ∈ V
41 elmapg 8789 . . . . . . . . . . 11 ((𝑅 ∈ Fin ∧ (1...(2 · 𝑤)) ∈ V) → (𝑓 ∈ (𝑅m (1...(2 · 𝑤))) ↔ 𝑓:(1...(2 · 𝑤))⟶𝑅))
4239, 40, 41sylancl 586 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℕ) → (𝑓 ∈ (𝑅m (1...(2 · 𝑤))) ↔ 𝑓:(1...(2 · 𝑤))⟶𝑅))
4342biimpa 476 . . . . . . . . 9 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...(2 · 𝑤)))) → 𝑓:(1...(2 · 𝑤))⟶𝑅)
44 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑓:(1...(2 · 𝑤))⟶𝑅)
45 elfznn 13490 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1...𝑤) → 𝑦 ∈ ℕ)
4645adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑦 ∈ ℕ)
4746nnred 12177 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑦 ∈ ℝ)
48 simpllr 775 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑤 ∈ ℕ)
4948nnred 12177 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑤 ∈ ℝ)
50 elfzle2 13465 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1...𝑤) → 𝑦𝑤)
5150adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑦𝑤)
5247, 49, 49, 51leadd1dd 11768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ≤ (𝑤 + 𝑤))
5348nncnd 12178 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑤 ∈ ℂ)
54532timesd 12401 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (2 · 𝑤) = (𝑤 + 𝑤))
5552, 54breqtrrd 5130 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ≤ (2 · 𝑤))
5646, 48nnaddcld 12214 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ∈ ℕ)
57 nnuz 12812 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
5856, 57eleqtrdi 2838 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ∈ (ℤ‘1))
5938ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (2 · 𝑤) ∈ ℕ)
6059nnzd 12532 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (2 · 𝑤) ∈ ℤ)
61 elfz5 13453 . . . . . . . . . . . . . . . 16 (((𝑦 + 𝑤) ∈ (ℤ‘1) ∧ (2 · 𝑤) ∈ ℤ) → ((𝑦 + 𝑤) ∈ (1...(2 · 𝑤)) ↔ (𝑦 + 𝑤) ≤ (2 · 𝑤)))
6258, 60, 61syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → ((𝑦 + 𝑤) ∈ (1...(2 · 𝑤)) ↔ (𝑦 + 𝑤) ≤ (2 · 𝑤)))
6355, 62mpbird 257 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ∈ (1...(2 · 𝑤)))
6444, 63ffvelcdmd 7039 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑓‘(𝑦 + 𝑤)) ∈ 𝑅)
65 fvoveq1 7392 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑓‘(𝑥 + 𝑤)) = (𝑓‘(𝑦 + 𝑤)))
6665cbvmptv 5206 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) = (𝑦 ∈ (1...𝑤) ↦ (𝑓‘(𝑦 + 𝑤)))
6764, 66fmptd 7068 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅)
68 ovex 7402 . . . . . . . . . . . . . 14 (1...𝑤) ∈ V
69 elmapg 8789 . . . . . . . . . . . . . 14 ((𝑅 ∈ Fin ∧ (1...𝑤) ∈ V) → ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅m (1...𝑤)) ↔ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅))
7039, 68, 69sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ℕ) → ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅m (1...𝑤)) ↔ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅))
7170biimpar 477 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℕ) ∧ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅) → (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅m (1...𝑤)))
7267, 71syldan 591 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅m (1...𝑤)))
73 breq2 5106 . . . . . . . . . . . 12 (𝑔 = (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) → (𝐾 MonoAP 𝑔𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤)))))
7473rspcv 3581 . . . . . . . . . . 11 ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅m (1...𝑤)) → (∀𝑔 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑔𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤)))))
7572, 74syl 17 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∀𝑔 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑔𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤)))))
76 2nn0 12435 . . . . . . . . . . . . 13 2 ∈ ℕ0
77 vdwlem9.k . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ (ℤ‘2))
7877ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → 𝐾 ∈ (ℤ‘2))
79 eluznn0 12852 . . . . . . . . . . . . 13 ((2 ∈ ℕ0𝐾 ∈ (ℤ‘2)) → 𝐾 ∈ ℕ0)
8076, 78, 79sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → 𝐾 ∈ ℕ0)
8168, 80, 67vdwmc 16925 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐})))
8239ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑅 ∈ Fin)
8378adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝐾 ∈ (ℤ‘2))
84 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑤 ∈ ℕ)
85 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑓:(1...(2 · 𝑤))⟶𝑅)
86 vex 3448 . . . . . . . . . . . . . . . 16 𝑐 ∈ V
87 simprll 778 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑎 ∈ ℕ)
88 simprlr 779 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑑 ∈ ℕ)
89 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))
9082, 83, 84, 85, 86, 87, 88, 89, 66vdwlem8 16935 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → ⟨1, 𝐾⟩ PolyAP 𝑓)
9190orcd 873 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
9291expr 456 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}) → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9392rexlimdvva 3192 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}) → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9493exlimdv 1933 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}) → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9581, 94sylbid 240 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9675, 95syld 47 . . . . . . . . 9 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∀𝑔 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑔 → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9743, 96syldan 591 . . . . . . . 8 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...(2 · 𝑤)))) → (∀𝑔 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑔 → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9897ralrimdva 3133 . . . . . . 7 ((𝜑𝑤 ∈ ℕ) → (∀𝑔 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑔 → ∀𝑓 ∈ (𝑅m (1...(2 · 𝑤)))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
99 oveq2 7377 . . . . . . . . . 10 (𝑛 = (2 · 𝑤) → (1...𝑛) = (1...(2 · 𝑤)))
10099oveq2d 7385 . . . . . . . . 9 (𝑛 = (2 · 𝑤) → (𝑅m (1...𝑛)) = (𝑅m (1...(2 · 𝑤))))
101100raleqdv 3296 . . . . . . . 8 (𝑛 = (2 · 𝑤) → (∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑓 ∈ (𝑅m (1...(2 · 𝑤)))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
102101rspcev 3585 . . . . . . 7 (((2 · 𝑤) ∈ ℕ ∧ ∀𝑓 ∈ (𝑅m (1...(2 · 𝑤)))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
10338, 98, 102syl6an 684 . . . . . 6 ((𝜑𝑤 ∈ ℕ) → (∀𝑔 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑔 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
10434, 103biimtrid 242 . . . . 5 ((𝜑𝑤 ∈ ℕ) → (∀𝑓 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
105104rexlimdva 3134 . . . 4 (𝜑 → (∃𝑤 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
10632, 105mpd 15 . . 3 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
107 breq2 5106 . . . . . . . . . 10 (𝑓 = 𝑔 → (⟨𝑚, 𝐾⟩ PolyAP 𝑓 ↔ ⟨𝑚, 𝐾⟩ PolyAP 𝑔))
108 breq2 5106 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝐾 + 1) MonoAP 𝑓 ↔ (𝐾 + 1) MonoAP 𝑔))
109107, 108orbi12d 918 . . . . . . . . 9 (𝑓 = 𝑔 → ((⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)))
110109cbvralvw 3213 . . . . . . . 8 (∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑔 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
11129raleqdv 3296 . . . . . . . 8 (𝑛 = 𝑤 → (∀𝑔 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) ↔ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)))
112110, 111bitrid 283 . . . . . . 7 (𝑛 = 𝑤 → (∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)))
113112cbvrexvw 3214 . . . . . 6 (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑤 ∈ ℕ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
114 oveq2 7377 . . . . . . . . . . . . 13 (𝑛 = 𝑣 → (1...𝑛) = (1...𝑣))
115114oveq2d 7385 . . . . . . . . . . . 12 (𝑛 = 𝑣 → (𝑠m (1...𝑛)) = (𝑠m (1...𝑣)))
116115raleqdv 3296 . . . . . . . . . . 11 (𝑛 = 𝑣 → (∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠m (1...𝑣))𝐾 MonoAP 𝑓))
117116cbvrexvw 3214 . . . . . . . . . 10 (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑣 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑣))𝐾 MonoAP 𝑓)
118 oveq1 7376 . . . . . . . . . . . 12 (𝑠 = (𝑅m (1...𝑤)) → (𝑠m (1...𝑣)) = ((𝑅m (1...𝑤)) ↑m (1...𝑣)))
119118raleqdv 3296 . . . . . . . . . . 11 (𝑠 = (𝑅m (1...𝑤)) → (∀𝑓 ∈ (𝑠m (1...𝑣))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))
120119rexbidv 3157 . . . . . . . . . 10 (𝑠 = (𝑅m (1...𝑤)) → (∃𝑣 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑣))𝐾 MonoAP 𝑓 ↔ ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))
121117, 120bitrid 283 . . . . . . . . 9 (𝑠 = (𝑅m (1...𝑤)) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))
12225ad2antrr 726 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
12326ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → 𝑅 ∈ Fin)
124 fzfi 13913 . . . . . . . . . 10 (1...𝑤) ∈ Fin
125 mapfi 9275 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ (1...𝑤) ∈ Fin) → (𝑅m (1...𝑤)) ∈ Fin)
126123, 124, 125sylancl 586 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → (𝑅m (1...𝑤)) ∈ Fin)
127121, 122, 126rspcdva 3586 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)
128 simprll 778 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → 𝑤 ∈ ℕ)
129 simprrl 780 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → 𝑣 ∈ ℕ)
130 nnmulcl 12186 . . . . . . . . . . . . 13 ((2 ∈ ℕ ∧ 𝑣 ∈ ℕ) → (2 · 𝑣) ∈ ℕ)
13135, 130mpan 690 . . . . . . . . . . . 12 (𝑣 ∈ ℕ → (2 · 𝑣) ∈ ℕ)
132 nnmulcl 12186 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ ∧ (2 · 𝑣) ∈ ℕ) → (𝑤 · (2 · 𝑣)) ∈ ℕ)
133131, 132sylan2 593 . . . . . . . . . . 11 ((𝑤 ∈ ℕ ∧ 𝑣 ∈ ℕ) → (𝑤 · (2 · 𝑣)) ∈ ℕ)
134128, 129, 133syl2anc 584 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → (𝑤 · (2 · 𝑣)) ∈ ℕ)
135 simp1l 1198 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → 𝜑)
136135, 26syl 17 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → 𝑅 ∈ Fin)
137135, 77syl 17 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → 𝐾 ∈ (ℤ‘2))
138135, 25syl 17 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
139 simp1r 1199 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → 𝑚 ∈ ℕ)
140 simp2ll 1241 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → 𝑤 ∈ ℕ)
141 simp2lr 1242 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
142 breq2 5106 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑘 → (⟨𝑚, 𝐾⟩ PolyAP 𝑔 ↔ ⟨𝑚, 𝐾⟩ PolyAP 𝑘))
143 breq2 5106 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑘 → ((𝐾 + 1) MonoAP 𝑔 ↔ (𝐾 + 1) MonoAP 𝑘))
144142, 143orbi12d 918 . . . . . . . . . . . . . . 15 (𝑔 = 𝑘 → ((⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) ↔ (⟨𝑚, 𝐾⟩ PolyAP 𝑘 ∨ (𝐾 + 1) MonoAP 𝑘)))
145144cbvralvw 3213 . . . . . . . . . . . . . 14 (∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) ↔ ∀𝑘 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑘 ∨ (𝐾 + 1) MonoAP 𝑘))
146141, 145sylib 218 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑘 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑘 ∨ (𝐾 + 1) MonoAP 𝑘))
147 simp2rl 1243 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → 𝑣 ∈ ℕ)
148 simp2rr 1244 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)
149 simp3 1138 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → ∈ (𝑅m (1...(𝑤 · (2 · 𝑣)))))
150 ovex 7402 . . . . . . . . . . . . . . 15 (1...(𝑤 · (2 · 𝑣))) ∈ V
151 elmapg 8789 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Fin ∧ (1...(𝑤 · (2 · 𝑣))) ∈ V) → ( ∈ (𝑅m (1...(𝑤 · (2 · 𝑣)))) ↔ :(1...(𝑤 · (2 · 𝑣)))⟶𝑅))
152136, 150, 151sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → ( ∈ (𝑅m (1...(𝑤 · (2 · 𝑣)))) ↔ :(1...(𝑤 · (2 · 𝑣)))⟶𝑅))
153149, 152mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → :(1...(𝑤 · (2 · 𝑣)))⟶𝑅)
154 fvoveq1 7392 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣)))) = (‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣)))))
155154cbvmptv 5206 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1...𝑤) ↦ (‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣))))) = (𝑢 ∈ (1...𝑤) ↦ (‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣)))))
156 oveq1 7376 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (𝑥 − 1) = (𝑧 − 1))
157156oveq1d 7384 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → ((𝑥 − 1) + 𝑣) = ((𝑧 − 1) + 𝑣))
158157oveq2d 7385 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝑤 · ((𝑥 − 1) + 𝑣)) = (𝑤 · ((𝑧 − 1) + 𝑣)))
159158oveq2d 7385 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣))) = (𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣))))
160159fveq2d 6844 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣)))) = (‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣)))))
161160mpteq2dv 5196 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑢 ∈ (1...𝑤) ↦ (‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣))))) = (𝑢 ∈ (1...𝑤) ↦ (‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣))))))
162155, 161eqtrid 2776 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑦 ∈ (1...𝑤) ↦ (‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣))))) = (𝑢 ∈ (1...𝑤) ↦ (‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣))))))
163162cbvmptv 5206 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑣) ↦ (𝑦 ∈ (1...𝑤) ↦ (‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣)))))) = (𝑧 ∈ (1...𝑣) ↦ (𝑢 ∈ (1...𝑤) ↦ (‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣))))))
164136, 137, 138, 139, 140, 146, 147, 148, 153, 163vdwlem9 16936 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → (⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP ))
1651643expia 1121 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → ( ∈ (𝑅m (1...(𝑤 · (2 · 𝑣)))) → (⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP )))
166165ralrimiv 3124 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → ∀ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP ))
167 oveq2 7377 . . . . . . . . . . . . . 14 (𝑛 = (𝑤 · (2 · 𝑣)) → (1...𝑛) = (1...(𝑤 · (2 · 𝑣))))
168167oveq2d 7385 . . . . . . . . . . . . 13 (𝑛 = (𝑤 · (2 · 𝑣)) → (𝑅m (1...𝑛)) = (𝑅m (1...(𝑤 · (2 · 𝑣)))))
169168raleqdv 3296 . . . . . . . . . . . 12 (𝑛 = (𝑤 · (2 · 𝑣)) → (∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑓 ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
170 breq2 5106 . . . . . . . . . . . . . 14 (𝑓 = → (⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ↔ ⟨(𝑚 + 1), 𝐾⟩ PolyAP ))
171 breq2 5106 . . . . . . . . . . . . . 14 (𝑓 = → ((𝐾 + 1) MonoAP 𝑓 ↔ (𝐾 + 1) MonoAP ))
172170, 171orbi12d 918 . . . . . . . . . . . . 13 (𝑓 = → ((⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP )))
173172cbvralvw 3213 . . . . . . . . . . . 12 (∀𝑓 ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP ))
174169, 173bitrdi 287 . . . . . . . . . . 11 (𝑛 = (𝑤 · (2 · 𝑣)) → (∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP )))
175174rspcev 3585 . . . . . . . . . 10 (((𝑤 · (2 · 𝑣)) ∈ ℕ ∧ ∀ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP )) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
176134, 166, 175syl2anc 584 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
177176anassrs 467 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
178127, 177rexlimddv 3140 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
179178rexlimdvaa 3135 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (∃𝑤 ∈ ℕ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
180113, 179biimtrid 242 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
181180expcom 413 . . . 4 (𝑚 ∈ ℕ → (𝜑 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
182181a2d 29 . . 3 (𝑚 ∈ ℕ → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) → (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
1836, 11, 16, 21, 106, 182nnind 12180 . 2 (𝑀 ∈ ℕ → (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
1841, 183mpcom 38 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  wss 3911  {csn 4585  cop 4591   class class class wbr 5102  cmpt 5183  ccnv 5630  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895  1c1 11045   + caddc 11047   · cmul 11049  cle 11185  cmin 11381  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  APcvdwa 16912   MonoAP cvdwm 16913   PolyAP cvdwp 16914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-hash 14272  df-vdwap 16915  df-vdwmc 16916  df-vdwpc 16917
This theorem is referenced by:  vdwlem11  16938
  Copyright terms: Public domain W3C validator