| Step | Hyp | Ref
| Expression |
| 1 | | vdwlem10.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 2 | | opeq1 4854 |
. . . . . . 7
⊢ (𝑥 = 1 → 〈𝑥, 𝐾〉 = 〈1, 𝐾〉) |
| 3 | 2 | breq1d 5134 |
. . . . . 6
⊢ (𝑥 = 1 → (〈𝑥, 𝐾〉 PolyAP 𝑓 ↔ 〈1, 𝐾〉 PolyAP 𝑓)) |
| 4 | 3 | orbi1d 916 |
. . . . 5
⊢ (𝑥 = 1 → ((〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 5 | 4 | rexralbidv 3211 |
. . . 4
⊢ (𝑥 = 1 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 6 | 5 | imbi2d 340 |
. . 3
⊢ (𝑥 = 1 → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))) |
| 7 | | opeq1 4854 |
. . . . . . 7
⊢ (𝑥 = 𝑚 → 〈𝑥, 𝐾〉 = 〈𝑚, 𝐾〉) |
| 8 | 7 | breq1d 5134 |
. . . . . 6
⊢ (𝑥 = 𝑚 → (〈𝑥, 𝐾〉 PolyAP 𝑓 ↔ 〈𝑚, 𝐾〉 PolyAP 𝑓)) |
| 9 | 8 | orbi1d 916 |
. . . . 5
⊢ (𝑥 = 𝑚 → ((〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 10 | 9 | rexralbidv 3211 |
. . . 4
⊢ (𝑥 = 𝑚 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 11 | 10 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑚 → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))) |
| 12 | | opeq1 4854 |
. . . . . . 7
⊢ (𝑥 = (𝑚 + 1) → 〈𝑥, 𝐾〉 = 〈(𝑚 + 1), 𝐾〉) |
| 13 | 12 | breq1d 5134 |
. . . . . 6
⊢ (𝑥 = (𝑚 + 1) → (〈𝑥, 𝐾〉 PolyAP 𝑓 ↔ 〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓)) |
| 14 | 13 | orbi1d 916 |
. . . . 5
⊢ (𝑥 = (𝑚 + 1) → ((〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 15 | 14 | rexralbidv 3211 |
. . . 4
⊢ (𝑥 = (𝑚 + 1) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 16 | 15 | imbi2d 340 |
. . 3
⊢ (𝑥 = (𝑚 + 1) → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))) |
| 17 | | opeq1 4854 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → 〈𝑥, 𝐾〉 = 〈𝑀, 𝐾〉) |
| 18 | 17 | breq1d 5134 |
. . . . . 6
⊢ (𝑥 = 𝑀 → (〈𝑥, 𝐾〉 PolyAP 𝑓 ↔ 〈𝑀, 𝐾〉 PolyAP 𝑓)) |
| 19 | 18 | orbi1d 916 |
. . . . 5
⊢ (𝑥 = 𝑀 → ((〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (〈𝑀, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 20 | 19 | rexralbidv 3211 |
. . . 4
⊢ (𝑥 = 𝑀 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑀, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 21 | 20 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑀 → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑀, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))) |
| 22 | | oveq1 7417 |
. . . . . . . 8
⊢ (𝑠 = 𝑅 → (𝑠 ↑m (1...𝑛)) = (𝑅 ↑m (1...𝑛))) |
| 23 | 22 | raleqdv 3309 |
. . . . . . 7
⊢ (𝑠 = 𝑅 → (∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
| 24 | 23 | rexbidv 3165 |
. . . . . 6
⊢ (𝑠 = 𝑅 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
| 25 | | vdwlem9.s |
. . . . . 6
⊢ (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
| 26 | | vdw.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Fin) |
| 27 | 24, 25, 26 | rspcdva 3607 |
. . . . 5
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
| 28 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑛 = 𝑤 → (1...𝑛) = (1...𝑤)) |
| 29 | 28 | oveq2d 7426 |
. . . . . . 7
⊢ (𝑛 = 𝑤 → (𝑅 ↑m (1...𝑛)) = (𝑅 ↑m (1...𝑤))) |
| 30 | 29 | raleqdv 3309 |
. . . . . 6
⊢ (𝑛 = 𝑤 → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑓)) |
| 31 | 30 | cbvrexvw 3225 |
. . . . 5
⊢
(∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑅 ↑m
(1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑤 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑓) |
| 32 | 27, 31 | sylib 218 |
. . . 4
⊢ (𝜑 → ∃𝑤 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑓) |
| 33 | | breq2 5128 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → (𝐾 MonoAP 𝑓 ↔ 𝐾 MonoAP 𝑔)) |
| 34 | 33 | cbvralvw 3224 |
. . . . . 6
⊢
(∀𝑓 ∈
(𝑅 ↑m
(1...𝑤))𝐾 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑔) |
| 35 | | 2nn 12318 |
. . . . . . . 8
⊢ 2 ∈
ℕ |
| 36 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → 𝑤 ∈ ℕ) |
| 37 | | nnmulcl 12269 |
. . . . . . . 8
⊢ ((2
∈ ℕ ∧ 𝑤
∈ ℕ) → (2 · 𝑤) ∈ ℕ) |
| 38 | 35, 36, 37 | sylancr 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → (2 · 𝑤) ∈
ℕ) |
| 39 | 26 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → 𝑅 ∈ Fin) |
| 40 | | ovex 7443 |
. . . . . . . . . . 11
⊢ (1...(2
· 𝑤)) ∈
V |
| 41 | | elmapg 8858 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Fin ∧ (1...(2
· 𝑤)) ∈ V)
→ (𝑓 ∈ (𝑅 ↑m (1...(2
· 𝑤))) ↔ 𝑓:(1...(2 · 𝑤))⟶𝑅)) |
| 42 | 39, 40, 41 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → (𝑓 ∈ (𝑅 ↑m (1...(2 · 𝑤))) ↔ 𝑓:(1...(2 · 𝑤))⟶𝑅)) |
| 43 | 42 | biimpa 476 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...(2 · 𝑤)))) → 𝑓:(1...(2 · 𝑤))⟶𝑅) |
| 44 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑓:(1...(2 · 𝑤))⟶𝑅) |
| 45 | | elfznn 13575 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (1...𝑤) → 𝑦 ∈ ℕ) |
| 46 | 45 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑦 ∈ ℕ) |
| 47 | 46 | nnred 12260 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑦 ∈ ℝ) |
| 48 | | simpllr 775 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑤 ∈ ℕ) |
| 49 | 48 | nnred 12260 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑤 ∈ ℝ) |
| 50 | | elfzle2 13550 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (1...𝑤) → 𝑦 ≤ 𝑤) |
| 51 | 50 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑦 ≤ 𝑤) |
| 52 | 47, 49, 49, 51 | leadd1dd 11856 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ≤ (𝑤 + 𝑤)) |
| 53 | 48 | nncnd 12261 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑤 ∈ ℂ) |
| 54 | 53 | 2timesd 12489 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (2 · 𝑤) = (𝑤 + 𝑤)) |
| 55 | 52, 54 | breqtrrd 5152 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ≤ (2 · 𝑤)) |
| 56 | 46, 48 | nnaddcld 12297 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ∈ ℕ) |
| 57 | | nnuz 12900 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ =
(ℤ≥‘1) |
| 58 | 56, 57 | eleqtrdi 2845 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ∈
(ℤ≥‘1)) |
| 59 | 38 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (2 · 𝑤) ∈ ℕ) |
| 60 | 59 | nnzd 12620 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (2 · 𝑤) ∈ ℤ) |
| 61 | | elfz5 13538 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 + 𝑤) ∈ (ℤ≥‘1)
∧ (2 · 𝑤) ∈
ℤ) → ((𝑦 + 𝑤) ∈ (1...(2 · 𝑤)) ↔ (𝑦 + 𝑤) ≤ (2 · 𝑤))) |
| 62 | 58, 60, 61 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → ((𝑦 + 𝑤) ∈ (1...(2 · 𝑤)) ↔ (𝑦 + 𝑤) ≤ (2 · 𝑤))) |
| 63 | 55, 62 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ∈ (1...(2 · 𝑤))) |
| 64 | 44, 63 | ffvelcdmd 7080 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑓‘(𝑦 + 𝑤)) ∈ 𝑅) |
| 65 | | fvoveq1 7433 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝑓‘(𝑥 + 𝑤)) = (𝑓‘(𝑦 + 𝑤))) |
| 66 | 65 | cbvmptv 5230 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) = (𝑦 ∈ (1...𝑤) ↦ (𝑓‘(𝑦 + 𝑤))) |
| 67 | 64, 66 | fmptd 7109 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅) |
| 68 | | ovex 7443 |
. . . . . . . . . . . . . 14
⊢
(1...𝑤) ∈
V |
| 69 | | elmapg 8858 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Fin ∧ (1...𝑤) ∈ V) → ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅 ↑m (1...𝑤)) ↔ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅)) |
| 70 | 39, 68, 69 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅 ↑m (1...𝑤)) ↔ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅)) |
| 71 | 70 | biimpar 477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅) → (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅 ↑m (1...𝑤))) |
| 72 | 67, 71 | syldan 591 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅 ↑m (1...𝑤))) |
| 73 | | breq2 5128 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) → (𝐾 MonoAP 𝑔 ↔ 𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))))) |
| 74 | 73 | rspcv 3602 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅 ↑m (1...𝑤)) → (∀𝑔 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑔 → 𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))))) |
| 75 | 72, 74 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∀𝑔 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑔 → 𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))))) |
| 76 | | 2nn0 12523 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ0 |
| 77 | | vdwlem9.k |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈
(ℤ≥‘2)) |
| 78 | 77 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → 𝐾 ∈
(ℤ≥‘2)) |
| 79 | | eluznn0 12938 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℕ0 ∧ 𝐾 ∈ (ℤ≥‘2))
→ 𝐾 ∈
ℕ0) |
| 80 | 76, 78, 79 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → 𝐾 ∈
ℕ0) |
| 81 | 68, 80, 67 | vdwmc 17003 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ↔ ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) |
| 82 | 39 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑅 ∈ Fin) |
| 83 | 78 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝐾 ∈
(ℤ≥‘2)) |
| 84 | | simpllr 775 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑤 ∈ ℕ) |
| 85 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑓:(1...(2 · 𝑤))⟶𝑅) |
| 86 | | vex 3468 |
. . . . . . . . . . . . . . . 16
⊢ 𝑐 ∈ V |
| 87 | | simprll 778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑎 ∈ ℕ) |
| 88 | | simprlr 779 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑑 ∈ ℕ) |
| 89 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐})) |
| 90 | 82, 83, 84, 85, 86, 87, 88, 89, 66 | vdwlem8 17013 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 〈1, 𝐾〉 PolyAP 𝑓) |
| 91 | 90 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
| 92 | 91 | expr 456 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}) → (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 93 | 92 | rexlimdvva 3202 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}) → (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 94 | 93 | exlimdv 1933 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}) → (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 95 | 81, 94 | sylbid 240 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) → (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 96 | 75, 95 | syld 47 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∀𝑔 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑔 → (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 97 | 43, 96 | syldan 591 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...(2 · 𝑤)))) → (∀𝑔 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑔 → (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 98 | 97 | ralrimdva 3141 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → (∀𝑔 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑔 → ∀𝑓 ∈ (𝑅 ↑m (1...(2 · 𝑤)))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 99 | | oveq2 7418 |
. . . . . . . . . 10
⊢ (𝑛 = (2 · 𝑤) → (1...𝑛) = (1...(2 · 𝑤))) |
| 100 | 99 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝑛 = (2 · 𝑤) → (𝑅 ↑m (1...𝑛)) = (𝑅 ↑m (1...(2 · 𝑤)))) |
| 101 | 100 | raleqdv 3309 |
. . . . . . . 8
⊢ (𝑛 = (2 · 𝑤) → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑓 ∈ (𝑅 ↑m (1...(2 · 𝑤)))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 102 | 101 | rspcev 3606 |
. . . . . . 7
⊢ (((2
· 𝑤) ∈ ℕ
∧ ∀𝑓 ∈
(𝑅 ↑m
(1...(2 · 𝑤)))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
| 103 | 38, 98, 102 | syl6an 684 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → (∀𝑔 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑔 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 104 | 34, 103 | biimtrid 242 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → (∀𝑓 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 105 | 104 | rexlimdva 3142 |
. . . 4
⊢ (𝜑 → (∃𝑤 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 106 | 32, 105 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
| 107 | | breq2 5128 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (〈𝑚, 𝐾〉 PolyAP 𝑓 ↔ 〈𝑚, 𝐾〉 PolyAP 𝑔)) |
| 108 | | breq2 5128 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((𝐾 + 1) MonoAP 𝑓 ↔ (𝐾 + 1) MonoAP 𝑔)) |
| 109 | 107, 108 | orbi12d 918 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → ((〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) |
| 110 | 109 | cbvralvw 3224 |
. . . . . . . 8
⊢
(∀𝑓 ∈
(𝑅 ↑m
(1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑔 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) |
| 111 | 29 | raleqdv 3309 |
. . . . . . . 8
⊢ (𝑛 = 𝑤 → (∀𝑔 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) ↔ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) |
| 112 | 110, 111 | bitrid 283 |
. . . . . . 7
⊢ (𝑛 = 𝑤 → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) |
| 113 | 112 | cbvrexvw 3225 |
. . . . . 6
⊢
(∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑅 ↑m
(1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑤 ∈ ℕ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) |
| 114 | | oveq2 7418 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑣 → (1...𝑛) = (1...𝑣)) |
| 115 | 114 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑣 → (𝑠 ↑m (1...𝑛)) = (𝑠 ↑m (1...𝑣))) |
| 116 | 115 | raleqdv 3309 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑣 → (∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠 ↑m (1...𝑣))𝐾 MonoAP 𝑓)) |
| 117 | 116 | cbvrexvw 3225 |
. . . . . . . . . 10
⊢
(∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑠 ↑m
(1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑣 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑣))𝐾 MonoAP 𝑓) |
| 118 | | oveq1 7417 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑅 ↑m (1...𝑤)) → (𝑠 ↑m (1...𝑣)) = ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))) |
| 119 | 118 | raleqdv 3309 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑅 ↑m (1...𝑤)) → (∀𝑓 ∈ (𝑠 ↑m (1...𝑣))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) |
| 120 | 119 | rexbidv 3165 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑅 ↑m (1...𝑤)) → (∃𝑣 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑣))𝐾 MonoAP 𝑓 ↔ ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) |
| 121 | 117, 120 | bitrid 283 |
. . . . . . . . 9
⊢ (𝑠 = (𝑅 ↑m (1...𝑤)) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) |
| 122 | 25 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
| 123 | 26 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → 𝑅 ∈ Fin) |
| 124 | | fzfi 13995 |
. . . . . . . . . 10
⊢
(1...𝑤) ∈
Fin |
| 125 | | mapfi 9365 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Fin ∧ (1...𝑤) ∈ Fin) → (𝑅 ↑m (1...𝑤)) ∈ Fin) |
| 126 | 123, 124,
125 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → (𝑅 ↑m (1...𝑤)) ∈ Fin) |
| 127 | 121, 122,
126 | rspcdva 3607 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓) |
| 128 | | simprll 778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → 𝑤 ∈ ℕ) |
| 129 | | simprrl 780 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → 𝑣 ∈ ℕ) |
| 130 | | nnmulcl 12269 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℕ ∧ 𝑣
∈ ℕ) → (2 · 𝑣) ∈ ℕ) |
| 131 | 35, 130 | mpan 690 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ ℕ → (2
· 𝑣) ∈
ℕ) |
| 132 | | nnmulcl 12269 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℕ ∧ (2
· 𝑣) ∈ ℕ)
→ (𝑤 · (2
· 𝑣)) ∈
ℕ) |
| 133 | 131, 132 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ ℕ ∧ 𝑣 ∈ ℕ) → (𝑤 · (2 · 𝑣)) ∈
ℕ) |
| 134 | 128, 129,
133 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → (𝑤 · (2 · 𝑣)) ∈ ℕ) |
| 135 | | simp1l 1198 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → 𝜑) |
| 136 | 135, 26 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → 𝑅 ∈ Fin) |
| 137 | 135, 77 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → 𝐾 ∈
(ℤ≥‘2)) |
| 138 | 135, 25 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
| 139 | | simp1r 1199 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → 𝑚 ∈ ℕ) |
| 140 | | simp2ll 1241 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → 𝑤 ∈ ℕ) |
| 141 | | simp2lr 1242 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) |
| 142 | | breq2 5128 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑘 → (〈𝑚, 𝐾〉 PolyAP 𝑔 ↔ 〈𝑚, 𝐾〉 PolyAP 𝑘)) |
| 143 | | breq2 5128 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑘 → ((𝐾 + 1) MonoAP 𝑔 ↔ (𝐾 + 1) MonoAP 𝑘)) |
| 144 | 142, 143 | orbi12d 918 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑘 → ((〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) ↔ (〈𝑚, 𝐾〉 PolyAP 𝑘 ∨ (𝐾 + 1) MonoAP 𝑘))) |
| 145 | 144 | cbvralvw 3224 |
. . . . . . . . . . . . . 14
⊢
(∀𝑔 ∈
(𝑅 ↑m
(1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) ↔ ∀𝑘 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑘 ∨ (𝐾 + 1) MonoAP 𝑘)) |
| 146 | 141, 145 | sylib 218 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑘 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑘 ∨ (𝐾 + 1) MonoAP 𝑘)) |
| 147 | | simp2rl 1243 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → 𝑣 ∈ ℕ) |
| 148 | | simp2rr 1244 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓) |
| 149 | | simp3 1138 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) |
| 150 | | ovex 7443 |
. . . . . . . . . . . . . . 15
⊢
(1...(𝑤 · (2
· 𝑣))) ∈
V |
| 151 | | elmapg 8858 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Fin ∧ (1...(𝑤 · (2 · 𝑣))) ∈ V) → (ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣)))) ↔ ℎ:(1...(𝑤 · (2 · 𝑣)))⟶𝑅)) |
| 152 | 136, 150,
151 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → (ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣)))) ↔ ℎ:(1...(𝑤 · (2 · 𝑣)))⟶𝑅)) |
| 153 | 149, 152 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → ℎ:(1...(𝑤 · (2 · 𝑣)))⟶𝑅) |
| 154 | | fvoveq1 7433 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑢 → (ℎ‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣)))) = (ℎ‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣))))) |
| 155 | 154 | cbvmptv 5230 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (1...𝑤) ↦ (ℎ‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣))))) = (𝑢 ∈ (1...𝑤) ↦ (ℎ‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣))))) |
| 156 | | oveq1 7417 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑧 → (𝑥 − 1) = (𝑧 − 1)) |
| 157 | 156 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑧 → ((𝑥 − 1) + 𝑣) = ((𝑧 − 1) + 𝑣)) |
| 158 | 157 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → (𝑤 · ((𝑥 − 1) + 𝑣)) = (𝑤 · ((𝑧 − 1) + 𝑣))) |
| 159 | 158 | oveq2d 7426 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → (𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣))) = (𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣)))) |
| 160 | 159 | fveq2d 6885 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (ℎ‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣)))) = (ℎ‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣))))) |
| 161 | 160 | mpteq2dv 5220 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (𝑢 ∈ (1...𝑤) ↦ (ℎ‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣))))) = (𝑢 ∈ (1...𝑤) ↦ (ℎ‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣)))))) |
| 162 | 155, 161 | eqtrid 2783 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑦 ∈ (1...𝑤) ↦ (ℎ‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣))))) = (𝑢 ∈ (1...𝑤) ↦ (ℎ‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣)))))) |
| 163 | 162 | cbvmptv 5230 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1...𝑣) ↦ (𝑦 ∈ (1...𝑤) ↦ (ℎ‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣)))))) = (𝑧 ∈ (1...𝑣) ↦ (𝑢 ∈ (1...𝑤) ↦ (ℎ‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣)))))) |
| 164 | 136, 137,
138, 139, 140, 146, 147, 148, 153, 163 | vdwlem9 17014 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → (〈(𝑚 + 1), 𝐾〉 PolyAP ℎ ∨ (𝐾 + 1) MonoAP ℎ)) |
| 165 | 164 | 3expia 1121 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → (ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣)))) → (〈(𝑚 + 1), 𝐾〉 PolyAP ℎ ∨ (𝐾 + 1) MonoAP ℎ))) |
| 166 | 165 | ralrimiv 3132 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → ∀ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))(〈(𝑚 + 1), 𝐾〉 PolyAP ℎ ∨ (𝐾 + 1) MonoAP ℎ)) |
| 167 | | oveq2 7418 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑤 · (2 · 𝑣)) → (1...𝑛) = (1...(𝑤 · (2 · 𝑣)))) |
| 168 | 167 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑤 · (2 · 𝑣)) → (𝑅 ↑m (1...𝑛)) = (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) |
| 169 | 168 | raleqdv 3309 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑤 · (2 · 𝑣)) → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑓 ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 170 | | breq2 5128 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = ℎ → (〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ↔ 〈(𝑚 + 1), 𝐾〉 PolyAP ℎ)) |
| 171 | | breq2 5128 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = ℎ → ((𝐾 + 1) MonoAP 𝑓 ↔ (𝐾 + 1) MonoAP ℎ)) |
| 172 | 170, 171 | orbi12d 918 |
. . . . . . . . . . . . 13
⊢ (𝑓 = ℎ → ((〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (〈(𝑚 + 1), 𝐾〉 PolyAP ℎ ∨ (𝐾 + 1) MonoAP ℎ))) |
| 173 | 172 | cbvralvw 3224 |
. . . . . . . . . . . 12
⊢
(∀𝑓 ∈
(𝑅 ↑m
(1...(𝑤 · (2
· 𝑣))))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))(〈(𝑚 + 1), 𝐾〉 PolyAP ℎ ∨ (𝐾 + 1) MonoAP ℎ)) |
| 174 | 169, 173 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑤 · (2 · 𝑣)) → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))(〈(𝑚 + 1), 𝐾〉 PolyAP ℎ ∨ (𝐾 + 1) MonoAP ℎ))) |
| 175 | 174 | rspcev 3606 |
. . . . . . . . . 10
⊢ (((𝑤 · (2 · 𝑣)) ∈ ℕ ∧
∀ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))(〈(𝑚 + 1), 𝐾〉 PolyAP ℎ ∨ (𝐾 + 1) MonoAP ℎ)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
| 176 | 134, 166,
175 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
| 177 | 176 | anassrs 467 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
| 178 | 127, 177 | rexlimddv 3148 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
| 179 | 178 | rexlimdvaa 3143 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (∃𝑤 ∈ ℕ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 180 | 113, 179 | biimtrid 242 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 181 | 180 | expcom 413 |
. . . 4
⊢ (𝑚 ∈ ℕ → (𝜑 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))) |
| 182 | 181 | a2d 29 |
. . 3
⊢ (𝑚 ∈ ℕ → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) → (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))) |
| 183 | 6, 11, 16, 21, 106, 182 | nnind 12263 |
. 2
⊢ (𝑀 ∈ ℕ → (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑀, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 184 | 1, 183 | mpcom 38 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑀, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |