MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem10 Structured version   Visualization version   GIF version

Theorem vdwlem10 16619
Description: Lemma for vdw 16623. Set up secondary induction on 𝑀. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem9.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem9.s (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
vdwlem10.m (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
vdwlem10 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
Distinct variable groups:   𝜑,𝑛,𝑓   𝑓,𝑠,𝐾,𝑛   𝑓,𝑀,𝑛   𝑅,𝑓,𝑛,𝑠   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑠)   𝑀(𝑠)

Proof of Theorem vdwlem10
Dummy variables 𝑎 𝑐 𝑑 𝑔 𝑘 𝑚 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwlem10.m . 2 (𝜑𝑀 ∈ ℕ)
2 opeq1 4801 . . . . . . 7 (𝑥 = 1 → ⟨𝑥, 𝐾⟩ = ⟨1, 𝐾⟩)
32breq1d 5080 . . . . . 6 (𝑥 = 1 → (⟨𝑥, 𝐾⟩ PolyAP 𝑓 ↔ ⟨1, 𝐾⟩ PolyAP 𝑓))
43orbi1d 913 . . . . 5 (𝑥 = 1 → ((⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
54rexralbidv 3229 . . . 4 (𝑥 = 1 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
65imbi2d 340 . . 3 (𝑥 = 1 → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
7 opeq1 4801 . . . . . . 7 (𝑥 = 𝑚 → ⟨𝑥, 𝐾⟩ = ⟨𝑚, 𝐾⟩)
87breq1d 5080 . . . . . 6 (𝑥 = 𝑚 → (⟨𝑥, 𝐾⟩ PolyAP 𝑓 ↔ ⟨𝑚, 𝐾⟩ PolyAP 𝑓))
98orbi1d 913 . . . . 5 (𝑥 = 𝑚 → ((⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
109rexralbidv 3229 . . . 4 (𝑥 = 𝑚 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
1110imbi2d 340 . . 3 (𝑥 = 𝑚 → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
12 opeq1 4801 . . . . . . 7 (𝑥 = (𝑚 + 1) → ⟨𝑥, 𝐾⟩ = ⟨(𝑚 + 1), 𝐾⟩)
1312breq1d 5080 . . . . . 6 (𝑥 = (𝑚 + 1) → (⟨𝑥, 𝐾⟩ PolyAP 𝑓 ↔ ⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓))
1413orbi1d 913 . . . . 5 (𝑥 = (𝑚 + 1) → ((⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
1514rexralbidv 3229 . . . 4 (𝑥 = (𝑚 + 1) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
1615imbi2d 340 . . 3 (𝑥 = (𝑚 + 1) → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
17 opeq1 4801 . . . . . . 7 (𝑥 = 𝑀 → ⟨𝑥, 𝐾⟩ = ⟨𝑀, 𝐾⟩)
1817breq1d 5080 . . . . . 6 (𝑥 = 𝑀 → (⟨𝑥, 𝐾⟩ PolyAP 𝑓 ↔ ⟨𝑀, 𝐾⟩ PolyAP 𝑓))
1918orbi1d 913 . . . . 5 (𝑥 = 𝑀 → ((⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
2019rexralbidv 3229 . . . 4 (𝑥 = 𝑀 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
2120imbi2d 340 . . 3 (𝑥 = 𝑀 → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
22 oveq1 7262 . . . . . . . 8 (𝑠 = 𝑅 → (𝑠m (1...𝑛)) = (𝑅m (1...𝑛)))
2322raleqdv 3339 . . . . . . 7 (𝑠 = 𝑅 → (∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
2423rexbidv 3225 . . . . . 6 (𝑠 = 𝑅 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
25 vdwlem9.s . . . . . 6 (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
26 vdw.r . . . . . 6 (𝜑𝑅 ∈ Fin)
2724, 25, 26rspcdva 3554 . . . . 5 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓)
28 oveq2 7263 . . . . . . . 8 (𝑛 = 𝑤 → (1...𝑛) = (1...𝑤))
2928oveq2d 7271 . . . . . . 7 (𝑛 = 𝑤 → (𝑅m (1...𝑛)) = (𝑅m (1...𝑤)))
3029raleqdv 3339 . . . . . 6 (𝑛 = 𝑤 → (∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑓))
3130cbvrexvw 3373 . . . . 5 (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑤 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑓)
3227, 31sylib 217 . . . 4 (𝜑 → ∃𝑤 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑓)
33 breq2 5074 . . . . . . 7 (𝑓 = 𝑔 → (𝐾 MonoAP 𝑓𝐾 MonoAP 𝑔))
3433cbvralvw 3372 . . . . . 6 (∀𝑓 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑔)
35 2nn 11976 . . . . . . . 8 2 ∈ ℕ
36 simpr 484 . . . . . . . 8 ((𝜑𝑤 ∈ ℕ) → 𝑤 ∈ ℕ)
37 nnmulcl 11927 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (2 · 𝑤) ∈ ℕ)
3835, 36, 37sylancr 586 . . . . . . 7 ((𝜑𝑤 ∈ ℕ) → (2 · 𝑤) ∈ ℕ)
3926adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℕ) → 𝑅 ∈ Fin)
40 ovex 7288 . . . . . . . . . . 11 (1...(2 · 𝑤)) ∈ V
41 elmapg 8586 . . . . . . . . . . 11 ((𝑅 ∈ Fin ∧ (1...(2 · 𝑤)) ∈ V) → (𝑓 ∈ (𝑅m (1...(2 · 𝑤))) ↔ 𝑓:(1...(2 · 𝑤))⟶𝑅))
4239, 40, 41sylancl 585 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℕ) → (𝑓 ∈ (𝑅m (1...(2 · 𝑤))) ↔ 𝑓:(1...(2 · 𝑤))⟶𝑅))
4342biimpa 476 . . . . . . . . 9 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...(2 · 𝑤)))) → 𝑓:(1...(2 · 𝑤))⟶𝑅)
44 simplr 765 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑓:(1...(2 · 𝑤))⟶𝑅)
45 elfznn 13214 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1...𝑤) → 𝑦 ∈ ℕ)
4645adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑦 ∈ ℕ)
4746nnred 11918 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑦 ∈ ℝ)
48 simpllr 772 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑤 ∈ ℕ)
4948nnred 11918 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑤 ∈ ℝ)
50 elfzle2 13189 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1...𝑤) → 𝑦𝑤)
5150adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑦𝑤)
5247, 49, 49, 51leadd1dd 11519 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ≤ (𝑤 + 𝑤))
5348nncnd 11919 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑤 ∈ ℂ)
54532timesd 12146 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (2 · 𝑤) = (𝑤 + 𝑤))
5552, 54breqtrrd 5098 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ≤ (2 · 𝑤))
5646, 48nnaddcld 11955 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ∈ ℕ)
57 nnuz 12550 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
5856, 57eleqtrdi 2849 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ∈ (ℤ‘1))
5938ad2antrr 722 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (2 · 𝑤) ∈ ℕ)
6059nnzd 12354 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (2 · 𝑤) ∈ ℤ)
61 elfz5 13177 . . . . . . . . . . . . . . . 16 (((𝑦 + 𝑤) ∈ (ℤ‘1) ∧ (2 · 𝑤) ∈ ℤ) → ((𝑦 + 𝑤) ∈ (1...(2 · 𝑤)) ↔ (𝑦 + 𝑤) ≤ (2 · 𝑤)))
6258, 60, 61syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → ((𝑦 + 𝑤) ∈ (1...(2 · 𝑤)) ↔ (𝑦 + 𝑤) ≤ (2 · 𝑤)))
6355, 62mpbird 256 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ∈ (1...(2 · 𝑤)))
6444, 63ffvelrnd 6944 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑓‘(𝑦 + 𝑤)) ∈ 𝑅)
65 fvoveq1 7278 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑓‘(𝑥 + 𝑤)) = (𝑓‘(𝑦 + 𝑤)))
6665cbvmptv 5183 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) = (𝑦 ∈ (1...𝑤) ↦ (𝑓‘(𝑦 + 𝑤)))
6764, 66fmptd 6970 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅)
68 ovex 7288 . . . . . . . . . . . . . 14 (1...𝑤) ∈ V
69 elmapg 8586 . . . . . . . . . . . . . 14 ((𝑅 ∈ Fin ∧ (1...𝑤) ∈ V) → ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅m (1...𝑤)) ↔ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅))
7039, 68, 69sylancl 585 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ℕ) → ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅m (1...𝑤)) ↔ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅))
7170biimpar 477 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℕ) ∧ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅) → (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅m (1...𝑤)))
7267, 71syldan 590 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅m (1...𝑤)))
73 breq2 5074 . . . . . . . . . . . 12 (𝑔 = (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) → (𝐾 MonoAP 𝑔𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤)))))
7473rspcv 3547 . . . . . . . . . . 11 ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅m (1...𝑤)) → (∀𝑔 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑔𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤)))))
7572, 74syl 17 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∀𝑔 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑔𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤)))))
76 2nn0 12180 . . . . . . . . . . . . 13 2 ∈ ℕ0
77 vdwlem9.k . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ (ℤ‘2))
7877ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → 𝐾 ∈ (ℤ‘2))
79 eluznn0 12586 . . . . . . . . . . . . 13 ((2 ∈ ℕ0𝐾 ∈ (ℤ‘2)) → 𝐾 ∈ ℕ0)
8076, 78, 79sylancr 586 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → 𝐾 ∈ ℕ0)
8168, 80, 67vdwmc 16607 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐})))
8239ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑅 ∈ Fin)
8378adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝐾 ∈ (ℤ‘2))
84 simpllr 772 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑤 ∈ ℕ)
85 simplr 765 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑓:(1...(2 · 𝑤))⟶𝑅)
86 vex 3426 . . . . . . . . . . . . . . . 16 𝑐 ∈ V
87 simprll 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑎 ∈ ℕ)
88 simprlr 776 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑑 ∈ ℕ)
89 simprr 769 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))
9082, 83, 84, 85, 86, 87, 88, 89, 66vdwlem8 16617 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → ⟨1, 𝐾⟩ PolyAP 𝑓)
9190orcd 869 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
9291expr 456 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}) → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9392rexlimdvva 3222 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}) → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9493exlimdv 1937 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}) → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9581, 94sylbid 239 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9675, 95syld 47 . . . . . . . . 9 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∀𝑔 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑔 → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9743, 96syldan 590 . . . . . . . 8 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...(2 · 𝑤)))) → (∀𝑔 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑔 → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9897ralrimdva 3112 . . . . . . 7 ((𝜑𝑤 ∈ ℕ) → (∀𝑔 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑔 → ∀𝑓 ∈ (𝑅m (1...(2 · 𝑤)))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
99 oveq2 7263 . . . . . . . . . 10 (𝑛 = (2 · 𝑤) → (1...𝑛) = (1...(2 · 𝑤)))
10099oveq2d 7271 . . . . . . . . 9 (𝑛 = (2 · 𝑤) → (𝑅m (1...𝑛)) = (𝑅m (1...(2 · 𝑤))))
101100raleqdv 3339 . . . . . . . 8 (𝑛 = (2 · 𝑤) → (∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑓 ∈ (𝑅m (1...(2 · 𝑤)))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
102101rspcev 3552 . . . . . . 7 (((2 · 𝑤) ∈ ℕ ∧ ∀𝑓 ∈ (𝑅m (1...(2 · 𝑤)))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
10338, 98, 102syl6an 680 . . . . . 6 ((𝜑𝑤 ∈ ℕ) → (∀𝑔 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑔 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
10434, 103syl5bi 241 . . . . 5 ((𝜑𝑤 ∈ ℕ) → (∀𝑓 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
105104rexlimdva 3212 . . . 4 (𝜑 → (∃𝑤 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑤))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
10632, 105mpd 15 . . 3 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
107 breq2 5074 . . . . . . . . . 10 (𝑓 = 𝑔 → (⟨𝑚, 𝐾⟩ PolyAP 𝑓 ↔ ⟨𝑚, 𝐾⟩ PolyAP 𝑔))
108 breq2 5074 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝐾 + 1) MonoAP 𝑓 ↔ (𝐾 + 1) MonoAP 𝑔))
109107, 108orbi12d 915 . . . . . . . . 9 (𝑓 = 𝑔 → ((⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)))
110109cbvralvw 3372 . . . . . . . 8 (∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑔 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
11129raleqdv 3339 . . . . . . . 8 (𝑛 = 𝑤 → (∀𝑔 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) ↔ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)))
112110, 111syl5bb 282 . . . . . . 7 (𝑛 = 𝑤 → (∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)))
113112cbvrexvw 3373 . . . . . 6 (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑤 ∈ ℕ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
114 oveq2 7263 . . . . . . . . . . . . 13 (𝑛 = 𝑣 → (1...𝑛) = (1...𝑣))
115114oveq2d 7271 . . . . . . . . . . . 12 (𝑛 = 𝑣 → (𝑠m (1...𝑛)) = (𝑠m (1...𝑣)))
116115raleqdv 3339 . . . . . . . . . . 11 (𝑛 = 𝑣 → (∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠m (1...𝑣))𝐾 MonoAP 𝑓))
117116cbvrexvw 3373 . . . . . . . . . 10 (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑣 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑣))𝐾 MonoAP 𝑓)
118 oveq1 7262 . . . . . . . . . . . 12 (𝑠 = (𝑅m (1...𝑤)) → (𝑠m (1...𝑣)) = ((𝑅m (1...𝑤)) ↑m (1...𝑣)))
119118raleqdv 3339 . . . . . . . . . . 11 (𝑠 = (𝑅m (1...𝑤)) → (∀𝑓 ∈ (𝑠m (1...𝑣))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))
120119rexbidv 3225 . . . . . . . . . 10 (𝑠 = (𝑅m (1...𝑤)) → (∃𝑣 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑣))𝐾 MonoAP 𝑓 ↔ ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))
121117, 120syl5bb 282 . . . . . . . . 9 (𝑠 = (𝑅m (1...𝑤)) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))
12225ad2antrr 722 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
12326ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → 𝑅 ∈ Fin)
124 fzfi 13620 . . . . . . . . . 10 (1...𝑤) ∈ Fin
125 mapfi 9045 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ (1...𝑤) ∈ Fin) → (𝑅m (1...𝑤)) ∈ Fin)
126123, 124, 125sylancl 585 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → (𝑅m (1...𝑤)) ∈ Fin)
127121, 122, 126rspcdva 3554 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)
128 simprll 775 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → 𝑤 ∈ ℕ)
129 simprrl 777 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → 𝑣 ∈ ℕ)
130 nnmulcl 11927 . . . . . . . . . . . . 13 ((2 ∈ ℕ ∧ 𝑣 ∈ ℕ) → (2 · 𝑣) ∈ ℕ)
13135, 130mpan 686 . . . . . . . . . . . 12 (𝑣 ∈ ℕ → (2 · 𝑣) ∈ ℕ)
132 nnmulcl 11927 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ ∧ (2 · 𝑣) ∈ ℕ) → (𝑤 · (2 · 𝑣)) ∈ ℕ)
133131, 132sylan2 592 . . . . . . . . . . 11 ((𝑤 ∈ ℕ ∧ 𝑣 ∈ ℕ) → (𝑤 · (2 · 𝑣)) ∈ ℕ)
134128, 129, 133syl2anc 583 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → (𝑤 · (2 · 𝑣)) ∈ ℕ)
135 simp1l 1195 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → 𝜑)
136135, 26syl 17 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → 𝑅 ∈ Fin)
137135, 77syl 17 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → 𝐾 ∈ (ℤ‘2))
138135, 25syl 17 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
139 simp1r 1196 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → 𝑚 ∈ ℕ)
140 simp2ll 1238 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → 𝑤 ∈ ℕ)
141 simp2lr 1239 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
142 breq2 5074 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑘 → (⟨𝑚, 𝐾⟩ PolyAP 𝑔 ↔ ⟨𝑚, 𝐾⟩ PolyAP 𝑘))
143 breq2 5074 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑘 → ((𝐾 + 1) MonoAP 𝑔 ↔ (𝐾 + 1) MonoAP 𝑘))
144142, 143orbi12d 915 . . . . . . . . . . . . . . 15 (𝑔 = 𝑘 → ((⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) ↔ (⟨𝑚, 𝐾⟩ PolyAP 𝑘 ∨ (𝐾 + 1) MonoAP 𝑘)))
145144cbvralvw 3372 . . . . . . . . . . . . . 14 (∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) ↔ ∀𝑘 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑘 ∨ (𝐾 + 1) MonoAP 𝑘))
146141, 145sylib 217 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑘 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑘 ∨ (𝐾 + 1) MonoAP 𝑘))
147 simp2rl 1240 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → 𝑣 ∈ ℕ)
148 simp2rr 1241 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)
149 simp3 1136 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → ∈ (𝑅m (1...(𝑤 · (2 · 𝑣)))))
150 ovex 7288 . . . . . . . . . . . . . . 15 (1...(𝑤 · (2 · 𝑣))) ∈ V
151 elmapg 8586 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Fin ∧ (1...(𝑤 · (2 · 𝑣))) ∈ V) → ( ∈ (𝑅m (1...(𝑤 · (2 · 𝑣)))) ↔ :(1...(𝑤 · (2 · 𝑣)))⟶𝑅))
152136, 150, 151sylancl 585 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → ( ∈ (𝑅m (1...(𝑤 · (2 · 𝑣)))) ↔ :(1...(𝑤 · (2 · 𝑣)))⟶𝑅))
153149, 152mpbid 231 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → :(1...(𝑤 · (2 · 𝑣)))⟶𝑅)
154 fvoveq1 7278 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣)))) = (‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣)))))
155154cbvmptv 5183 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1...𝑤) ↦ (‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣))))) = (𝑢 ∈ (1...𝑤) ↦ (‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣)))))
156 oveq1 7262 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (𝑥 − 1) = (𝑧 − 1))
157156oveq1d 7270 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → ((𝑥 − 1) + 𝑣) = ((𝑧 − 1) + 𝑣))
158157oveq2d 7271 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝑤 · ((𝑥 − 1) + 𝑣)) = (𝑤 · ((𝑧 − 1) + 𝑣)))
159158oveq2d 7271 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣))) = (𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣))))
160159fveq2d 6760 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣)))) = (‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣)))))
161160mpteq2dv 5172 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑢 ∈ (1...𝑤) ↦ (‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣))))) = (𝑢 ∈ (1...𝑤) ↦ (‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣))))))
162155, 161eqtrid 2790 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑦 ∈ (1...𝑤) ↦ (‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣))))) = (𝑢 ∈ (1...𝑤) ↦ (‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣))))))
163162cbvmptv 5183 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑣) ↦ (𝑦 ∈ (1...𝑤) ↦ (‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣)))))) = (𝑧 ∈ (1...𝑣) ↦ (𝑢 ∈ (1...𝑤) ↦ (‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣))))))
164136, 137, 138, 139, 140, 146, 147, 148, 153, 163vdwlem9 16618 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))) → (⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP ))
1651643expia 1119 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → ( ∈ (𝑅m (1...(𝑤 · (2 · 𝑣)))) → (⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP )))
166165ralrimiv 3106 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → ∀ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP ))
167 oveq2 7263 . . . . . . . . . . . . . 14 (𝑛 = (𝑤 · (2 · 𝑣)) → (1...𝑛) = (1...(𝑤 · (2 · 𝑣))))
168167oveq2d 7271 . . . . . . . . . . . . 13 (𝑛 = (𝑤 · (2 · 𝑣)) → (𝑅m (1...𝑛)) = (𝑅m (1...(𝑤 · (2 · 𝑣)))))
169168raleqdv 3339 . . . . . . . . . . . 12 (𝑛 = (𝑤 · (2 · 𝑣)) → (∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑓 ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
170 breq2 5074 . . . . . . . . . . . . . 14 (𝑓 = → (⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ↔ ⟨(𝑚 + 1), 𝐾⟩ PolyAP ))
171 breq2 5074 . . . . . . . . . . . . . 14 (𝑓 = → ((𝐾 + 1) MonoAP 𝑓 ↔ (𝐾 + 1) MonoAP ))
172170, 171orbi12d 915 . . . . . . . . . . . . 13 (𝑓 = → ((⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP )))
173172cbvralvw 3372 . . . . . . . . . . . 12 (∀𝑓 ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP ))
174169, 173bitrdi 286 . . . . . . . . . . 11 (𝑛 = (𝑤 · (2 · 𝑣)) → (∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP )))
175174rspcev 3552 . . . . . . . . . 10 (((𝑤 · (2 · 𝑣)) ∈ ℕ ∧ ∀ ∈ (𝑅m (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP )) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
176134, 166, 175syl2anc 583 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
177176anassrs 467 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
178127, 177rexlimddv 3219 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
179178rexlimdvaa 3213 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (∃𝑤 ∈ ℕ ∀𝑔 ∈ (𝑅m (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
180113, 179syl5bi 241 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
181180expcom 413 . . . 4 (𝑚 ∈ ℕ → (𝜑 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
182181a2d 29 . . 3 (𝑚 ∈ ℕ → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) → (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
1836, 11, 16, 21, 106, 182nnind 11921 . 2 (𝑀 ∈ ℕ → (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
1841, 183mpcom 38 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153  ccnv 5579  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  APcvdwa 16594   MonoAP cvdwm 16595   PolyAP cvdwp 16596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-hash 13973  df-vdwap 16597  df-vdwmc 16598  df-vdwpc 16599
This theorem is referenced by:  vdwlem11  16620
  Copyright terms: Public domain W3C validator