Step | Hyp | Ref
| Expression |
1 | | vdwlem10.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℕ) |
2 | | opeq1 4804 |
. . . . . . 7
⊢ (𝑥 = 1 → 〈𝑥, 𝐾〉 = 〈1, 𝐾〉) |
3 | 2 | breq1d 5084 |
. . . . . 6
⊢ (𝑥 = 1 → (〈𝑥, 𝐾〉 PolyAP 𝑓 ↔ 〈1, 𝐾〉 PolyAP 𝑓)) |
4 | 3 | orbi1d 914 |
. . . . 5
⊢ (𝑥 = 1 → ((〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
5 | 4 | rexralbidv 3230 |
. . . 4
⊢ (𝑥 = 1 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
6 | 5 | imbi2d 341 |
. . 3
⊢ (𝑥 = 1 → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))) |
7 | | opeq1 4804 |
. . . . . . 7
⊢ (𝑥 = 𝑚 → 〈𝑥, 𝐾〉 = 〈𝑚, 𝐾〉) |
8 | 7 | breq1d 5084 |
. . . . . 6
⊢ (𝑥 = 𝑚 → (〈𝑥, 𝐾〉 PolyAP 𝑓 ↔ 〈𝑚, 𝐾〉 PolyAP 𝑓)) |
9 | 8 | orbi1d 914 |
. . . . 5
⊢ (𝑥 = 𝑚 → ((〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
10 | 9 | rexralbidv 3230 |
. . . 4
⊢ (𝑥 = 𝑚 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
11 | 10 | imbi2d 341 |
. . 3
⊢ (𝑥 = 𝑚 → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))) |
12 | | opeq1 4804 |
. . . . . . 7
⊢ (𝑥 = (𝑚 + 1) → 〈𝑥, 𝐾〉 = 〈(𝑚 + 1), 𝐾〉) |
13 | 12 | breq1d 5084 |
. . . . . 6
⊢ (𝑥 = (𝑚 + 1) → (〈𝑥, 𝐾〉 PolyAP 𝑓 ↔ 〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓)) |
14 | 13 | orbi1d 914 |
. . . . 5
⊢ (𝑥 = (𝑚 + 1) → ((〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
15 | 14 | rexralbidv 3230 |
. . . 4
⊢ (𝑥 = (𝑚 + 1) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
16 | 15 | imbi2d 341 |
. . 3
⊢ (𝑥 = (𝑚 + 1) → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))) |
17 | | opeq1 4804 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → 〈𝑥, 𝐾〉 = 〈𝑀, 𝐾〉) |
18 | 17 | breq1d 5084 |
. . . . . 6
⊢ (𝑥 = 𝑀 → (〈𝑥, 𝐾〉 PolyAP 𝑓 ↔ 〈𝑀, 𝐾〉 PolyAP 𝑓)) |
19 | 18 | orbi1d 914 |
. . . . 5
⊢ (𝑥 = 𝑀 → ((〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (〈𝑀, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
20 | 19 | rexralbidv 3230 |
. . . 4
⊢ (𝑥 = 𝑀 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑀, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
21 | 20 | imbi2d 341 |
. . 3
⊢ (𝑥 = 𝑀 → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑥, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑀, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))) |
22 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑠 = 𝑅 → (𝑠 ↑m (1...𝑛)) = (𝑅 ↑m (1...𝑛))) |
23 | 22 | raleqdv 3348 |
. . . . . . 7
⊢ (𝑠 = 𝑅 → (∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
24 | 23 | rexbidv 3226 |
. . . . . 6
⊢ (𝑠 = 𝑅 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
25 | | vdwlem9.s |
. . . . . 6
⊢ (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
26 | | vdw.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Fin) |
27 | 24, 25, 26 | rspcdva 3562 |
. . . . 5
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
28 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑛 = 𝑤 → (1...𝑛) = (1...𝑤)) |
29 | 28 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑛 = 𝑤 → (𝑅 ↑m (1...𝑛)) = (𝑅 ↑m (1...𝑤))) |
30 | 29 | raleqdv 3348 |
. . . . . 6
⊢ (𝑛 = 𝑤 → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑓)) |
31 | 30 | cbvrexvw 3384 |
. . . . 5
⊢
(∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑅 ↑m
(1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑤 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑓) |
32 | 27, 31 | sylib 217 |
. . . 4
⊢ (𝜑 → ∃𝑤 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑓) |
33 | | breq2 5078 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → (𝐾 MonoAP 𝑓 ↔ 𝐾 MonoAP 𝑔)) |
34 | 33 | cbvralvw 3383 |
. . . . . 6
⊢
(∀𝑓 ∈
(𝑅 ↑m
(1...𝑤))𝐾 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑔) |
35 | | 2nn 12046 |
. . . . . . . 8
⊢ 2 ∈
ℕ |
36 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → 𝑤 ∈ ℕ) |
37 | | nnmulcl 11997 |
. . . . . . . 8
⊢ ((2
∈ ℕ ∧ 𝑤
∈ ℕ) → (2 · 𝑤) ∈ ℕ) |
38 | 35, 36, 37 | sylancr 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → (2 · 𝑤) ∈
ℕ) |
39 | 26 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → 𝑅 ∈ Fin) |
40 | | ovex 7308 |
. . . . . . . . . . 11
⊢ (1...(2
· 𝑤)) ∈
V |
41 | | elmapg 8628 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Fin ∧ (1...(2
· 𝑤)) ∈ V)
→ (𝑓 ∈ (𝑅 ↑m (1...(2
· 𝑤))) ↔ 𝑓:(1...(2 · 𝑤))⟶𝑅)) |
42 | 39, 40, 41 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → (𝑓 ∈ (𝑅 ↑m (1...(2 · 𝑤))) ↔ 𝑓:(1...(2 · 𝑤))⟶𝑅)) |
43 | 42 | biimpa 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...(2 · 𝑤)))) → 𝑓:(1...(2 · 𝑤))⟶𝑅) |
44 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑓:(1...(2 · 𝑤))⟶𝑅) |
45 | | elfznn 13285 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (1...𝑤) → 𝑦 ∈ ℕ) |
46 | 45 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑦 ∈ ℕ) |
47 | 46 | nnred 11988 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑦 ∈ ℝ) |
48 | | simpllr 773 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑤 ∈ ℕ) |
49 | 48 | nnred 11988 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑤 ∈ ℝ) |
50 | | elfzle2 13260 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (1...𝑤) → 𝑦 ≤ 𝑤) |
51 | 50 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑦 ≤ 𝑤) |
52 | 47, 49, 49, 51 | leadd1dd 11589 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ≤ (𝑤 + 𝑤)) |
53 | 48 | nncnd 11989 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑤 ∈ ℂ) |
54 | 53 | 2timesd 12216 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (2 · 𝑤) = (𝑤 + 𝑤)) |
55 | 52, 54 | breqtrrd 5102 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ≤ (2 · 𝑤)) |
56 | 46, 48 | nnaddcld 12025 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ∈ ℕ) |
57 | | nnuz 12621 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ =
(ℤ≥‘1) |
58 | 56, 57 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ∈
(ℤ≥‘1)) |
59 | 38 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (2 · 𝑤) ∈ ℕ) |
60 | 59 | nnzd 12425 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (2 · 𝑤) ∈ ℤ) |
61 | | elfz5 13248 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 + 𝑤) ∈ (ℤ≥‘1)
∧ (2 · 𝑤) ∈
ℤ) → ((𝑦 + 𝑤) ∈ (1...(2 · 𝑤)) ↔ (𝑦 + 𝑤) ≤ (2 · 𝑤))) |
62 | 58, 60, 61 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → ((𝑦 + 𝑤) ∈ (1...(2 · 𝑤)) ↔ (𝑦 + 𝑤) ≤ (2 · 𝑤))) |
63 | 55, 62 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ∈ (1...(2 · 𝑤))) |
64 | 44, 63 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑓‘(𝑦 + 𝑤)) ∈ 𝑅) |
65 | | fvoveq1 7298 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝑓‘(𝑥 + 𝑤)) = (𝑓‘(𝑦 + 𝑤))) |
66 | 65 | cbvmptv 5187 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) = (𝑦 ∈ (1...𝑤) ↦ (𝑓‘(𝑦 + 𝑤))) |
67 | 64, 66 | fmptd 6988 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅) |
68 | | ovex 7308 |
. . . . . . . . . . . . . 14
⊢
(1...𝑤) ∈
V |
69 | | elmapg 8628 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Fin ∧ (1...𝑤) ∈ V) → ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅 ↑m (1...𝑤)) ↔ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅)) |
70 | 39, 68, 69 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅 ↑m (1...𝑤)) ↔ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅)) |
71 | 70 | biimpar 478 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅) → (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅 ↑m (1...𝑤))) |
72 | 67, 71 | syldan 591 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅 ↑m (1...𝑤))) |
73 | | breq2 5078 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) → (𝐾 MonoAP 𝑔 ↔ 𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))))) |
74 | 73 | rspcv 3557 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅 ↑m (1...𝑤)) → (∀𝑔 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑔 → 𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))))) |
75 | 72, 74 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∀𝑔 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑔 → 𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))))) |
76 | | 2nn0 12250 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ0 |
77 | | vdwlem9.k |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈
(ℤ≥‘2)) |
78 | 77 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → 𝐾 ∈
(ℤ≥‘2)) |
79 | | eluznn0 12657 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℕ0 ∧ 𝐾 ∈ (ℤ≥‘2))
→ 𝐾 ∈
ℕ0) |
80 | 76, 78, 79 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → 𝐾 ∈
ℕ0) |
81 | 68, 80, 67 | vdwmc 16679 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ↔ ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) |
82 | 39 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑅 ∈ Fin) |
83 | 78 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝐾 ∈
(ℤ≥‘2)) |
84 | | simpllr 773 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑤 ∈ ℕ) |
85 | | simplr 766 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑓:(1...(2 · 𝑤))⟶𝑅) |
86 | | vex 3436 |
. . . . . . . . . . . . . . . 16
⊢ 𝑐 ∈ V |
87 | | simprll 776 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑎 ∈ ℕ) |
88 | | simprlr 777 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑑 ∈ ℕ) |
89 | | simprr 770 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐})) |
90 | 82, 83, 84, 85, 86, 87, 88, 89, 66 | vdwlem8 16689 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 〈1, 𝐾〉 PolyAP 𝑓) |
91 | 90 | orcd 870 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
92 | 91 | expr 457 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}) → (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
93 | 92 | rexlimdvva 3223 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}) → (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
94 | 93 | exlimdv 1936 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡(𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}) → (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
95 | 81, 94 | sylbid 239 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) → (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
96 | 75, 95 | syld 47 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∀𝑔 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑔 → (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
97 | 43, 96 | syldan 591 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...(2 · 𝑤)))) → (∀𝑔 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑔 → (〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
98 | 97 | ralrimdva 3106 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → (∀𝑔 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑔 → ∀𝑓 ∈ (𝑅 ↑m (1...(2 · 𝑤)))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
99 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑛 = (2 · 𝑤) → (1...𝑛) = (1...(2 · 𝑤))) |
100 | 99 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑛 = (2 · 𝑤) → (𝑅 ↑m (1...𝑛)) = (𝑅 ↑m (1...(2 · 𝑤)))) |
101 | 100 | raleqdv 3348 |
. . . . . . . 8
⊢ (𝑛 = (2 · 𝑤) → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑓 ∈ (𝑅 ↑m (1...(2 · 𝑤)))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
102 | 101 | rspcev 3561 |
. . . . . . 7
⊢ (((2
· 𝑤) ∈ ℕ
∧ ∀𝑓 ∈
(𝑅 ↑m
(1...(2 · 𝑤)))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
103 | 38, 98, 102 | syl6an 681 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → (∀𝑔 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑔 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
104 | 34, 103 | syl5bi 241 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ) → (∀𝑓 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
105 | 104 | rexlimdva 3213 |
. . . 4
⊢ (𝜑 → (∃𝑤 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑤))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
106 | 32, 105 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈1, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
107 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (〈𝑚, 𝐾〉 PolyAP 𝑓 ↔ 〈𝑚, 𝐾〉 PolyAP 𝑔)) |
108 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((𝐾 + 1) MonoAP 𝑓 ↔ (𝐾 + 1) MonoAP 𝑔)) |
109 | 107, 108 | orbi12d 916 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → ((〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) |
110 | 109 | cbvralvw 3383 |
. . . . . . . 8
⊢
(∀𝑓 ∈
(𝑅 ↑m
(1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑔 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) |
111 | 29 | raleqdv 3348 |
. . . . . . . 8
⊢ (𝑛 = 𝑤 → (∀𝑔 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) ↔ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) |
112 | 110, 111 | bitrid 282 |
. . . . . . 7
⊢ (𝑛 = 𝑤 → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) |
113 | 112 | cbvrexvw 3384 |
. . . . . 6
⊢
(∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑅 ↑m
(1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑤 ∈ ℕ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) |
114 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑣 → (1...𝑛) = (1...𝑣)) |
115 | 114 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑣 → (𝑠 ↑m (1...𝑛)) = (𝑠 ↑m (1...𝑣))) |
116 | 115 | raleqdv 3348 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑣 → (∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠 ↑m (1...𝑣))𝐾 MonoAP 𝑓)) |
117 | 116 | cbvrexvw 3384 |
. . . . . . . . . 10
⊢
(∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑠 ↑m
(1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑣 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑣))𝐾 MonoAP 𝑓) |
118 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑅 ↑m (1...𝑤)) → (𝑠 ↑m (1...𝑣)) = ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))) |
119 | 118 | raleqdv 3348 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑅 ↑m (1...𝑤)) → (∀𝑓 ∈ (𝑠 ↑m (1...𝑣))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) |
120 | 119 | rexbidv 3226 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑅 ↑m (1...𝑤)) → (∃𝑣 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑣))𝐾 MonoAP 𝑓 ↔ ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) |
121 | 117, 120 | bitrid 282 |
. . . . . . . . 9
⊢ (𝑠 = (𝑅 ↑m (1...𝑤)) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) |
122 | 25 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
123 | 26 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → 𝑅 ∈ Fin) |
124 | | fzfi 13692 |
. . . . . . . . . 10
⊢
(1...𝑤) ∈
Fin |
125 | | mapfi 9115 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Fin ∧ (1...𝑤) ∈ Fin) → (𝑅 ↑m (1...𝑤)) ∈ Fin) |
126 | 123, 124,
125 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → (𝑅 ↑m (1...𝑤)) ∈ Fin) |
127 | 121, 122,
126 | rspcdva 3562 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓) |
128 | | simprll 776 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → 𝑤 ∈ ℕ) |
129 | | simprrl 778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → 𝑣 ∈ ℕ) |
130 | | nnmulcl 11997 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℕ ∧ 𝑣
∈ ℕ) → (2 · 𝑣) ∈ ℕ) |
131 | 35, 130 | mpan 687 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ ℕ → (2
· 𝑣) ∈
ℕ) |
132 | | nnmulcl 11997 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℕ ∧ (2
· 𝑣) ∈ ℕ)
→ (𝑤 · (2
· 𝑣)) ∈
ℕ) |
133 | 131, 132 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ ℕ ∧ 𝑣 ∈ ℕ) → (𝑤 · (2 · 𝑣)) ∈
ℕ) |
134 | 128, 129,
133 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → (𝑤 · (2 · 𝑣)) ∈ ℕ) |
135 | | simp1l 1196 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → 𝜑) |
136 | 135, 26 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → 𝑅 ∈ Fin) |
137 | 135, 77 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → 𝐾 ∈
(ℤ≥‘2)) |
138 | 135, 25 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
139 | | simp1r 1197 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → 𝑚 ∈ ℕ) |
140 | | simp2ll 1239 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → 𝑤 ∈ ℕ) |
141 | | simp2lr 1240 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) |
142 | | breq2 5078 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑘 → (〈𝑚, 𝐾〉 PolyAP 𝑔 ↔ 〈𝑚, 𝐾〉 PolyAP 𝑘)) |
143 | | breq2 5078 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑘 → ((𝐾 + 1) MonoAP 𝑔 ↔ (𝐾 + 1) MonoAP 𝑘)) |
144 | 142, 143 | orbi12d 916 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑘 → ((〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) ↔ (〈𝑚, 𝐾〉 PolyAP 𝑘 ∨ (𝐾 + 1) MonoAP 𝑘))) |
145 | 144 | cbvralvw 3383 |
. . . . . . . . . . . . . 14
⊢
(∀𝑔 ∈
(𝑅 ↑m
(1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) ↔ ∀𝑘 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑘 ∨ (𝐾 + 1) MonoAP 𝑘)) |
146 | 141, 145 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑘 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑘 ∨ (𝐾 + 1) MonoAP 𝑘)) |
147 | | simp2rl 1241 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → 𝑣 ∈ ℕ) |
148 | | simp2rr 1242 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓) |
149 | | simp3 1137 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) |
150 | | ovex 7308 |
. . . . . . . . . . . . . . 15
⊢
(1...(𝑤 · (2
· 𝑣))) ∈
V |
151 | | elmapg 8628 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Fin ∧ (1...(𝑤 · (2 · 𝑣))) ∈ V) → (ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣)))) ↔ ℎ:(1...(𝑤 · (2 · 𝑣)))⟶𝑅)) |
152 | 136, 150,
151 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → (ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣)))) ↔ ℎ:(1...(𝑤 · (2 · 𝑣)))⟶𝑅)) |
153 | 149, 152 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → ℎ:(1...(𝑤 · (2 · 𝑣)))⟶𝑅) |
154 | | fvoveq1 7298 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑢 → (ℎ‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣)))) = (ℎ‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣))))) |
155 | 154 | cbvmptv 5187 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (1...𝑤) ↦ (ℎ‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣))))) = (𝑢 ∈ (1...𝑤) ↦ (ℎ‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣))))) |
156 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑧 → (𝑥 − 1) = (𝑧 − 1)) |
157 | 156 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑧 → ((𝑥 − 1) + 𝑣) = ((𝑧 − 1) + 𝑣)) |
158 | 157 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → (𝑤 · ((𝑥 − 1) + 𝑣)) = (𝑤 · ((𝑧 − 1) + 𝑣))) |
159 | 158 | oveq2d 7291 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → (𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣))) = (𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣)))) |
160 | 159 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (ℎ‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣)))) = (ℎ‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣))))) |
161 | 160 | mpteq2dv 5176 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (𝑢 ∈ (1...𝑤) ↦ (ℎ‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣))))) = (𝑢 ∈ (1...𝑤) ↦ (ℎ‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣)))))) |
162 | 155, 161 | eqtrid 2790 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑦 ∈ (1...𝑤) ↦ (ℎ‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣))))) = (𝑢 ∈ (1...𝑤) ↦ (ℎ‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣)))))) |
163 | 162 | cbvmptv 5187 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1...𝑣) ↦ (𝑦 ∈ (1...𝑤) ↦ (ℎ‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣)))))) = (𝑧 ∈ (1...𝑣) ↦ (𝑢 ∈ (1...𝑤) ↦ (ℎ‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣)))))) |
164 | 136, 137,
138, 139, 140, 146, 147, 148, 153, 163 | vdwlem9 16690 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) → (〈(𝑚 + 1), 𝐾〉 PolyAP ℎ ∨ (𝐾 + 1) MonoAP ℎ)) |
165 | 164 | 3expia 1120 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → (ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣)))) → (〈(𝑚 + 1), 𝐾〉 PolyAP ℎ ∨ (𝐾 + 1) MonoAP ℎ))) |
166 | 165 | ralrimiv 3102 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → ∀ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))(〈(𝑚 + 1), 𝐾〉 PolyAP ℎ ∨ (𝐾 + 1) MonoAP ℎ)) |
167 | | oveq2 7283 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑤 · (2 · 𝑣)) → (1...𝑛) = (1...(𝑤 · (2 · 𝑣)))) |
168 | 167 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑤 · (2 · 𝑣)) → (𝑅 ↑m (1...𝑛)) = (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))) |
169 | 168 | raleqdv 3348 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑤 · (2 · 𝑣)) → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑓 ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
170 | | breq2 5078 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = ℎ → (〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ↔ 〈(𝑚 + 1), 𝐾〉 PolyAP ℎ)) |
171 | | breq2 5078 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = ℎ → ((𝐾 + 1) MonoAP 𝑓 ↔ (𝐾 + 1) MonoAP ℎ)) |
172 | 170, 171 | orbi12d 916 |
. . . . . . . . . . . . 13
⊢ (𝑓 = ℎ → ((〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (〈(𝑚 + 1), 𝐾〉 PolyAP ℎ ∨ (𝐾 + 1) MonoAP ℎ))) |
173 | 172 | cbvralvw 3383 |
. . . . . . . . . . . 12
⊢
(∀𝑓 ∈
(𝑅 ↑m
(1...(𝑤 · (2
· 𝑣))))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))(〈(𝑚 + 1), 𝐾〉 PolyAP ℎ ∨ (𝐾 + 1) MonoAP ℎ)) |
174 | 169, 173 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑤 · (2 · 𝑣)) → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))(〈(𝑚 + 1), 𝐾〉 PolyAP ℎ ∨ (𝐾 + 1) MonoAP ℎ))) |
175 | 174 | rspcev 3561 |
. . . . . . . . . 10
⊢ (((𝑤 · (2 · 𝑣)) ∈ ℕ ∧
∀ℎ ∈ (𝑅 ↑m (1...(𝑤 · (2 · 𝑣))))(〈(𝑚 + 1), 𝐾〉 PolyAP ℎ ∨ (𝐾 + 1) MonoAP ℎ)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
176 | 134, 166,
175 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓))) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
177 | 176 | anassrs 468 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅 ↑m (1...𝑤)) ↑m (1...𝑣))𝐾 MonoAP 𝑓)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
178 | 127, 177 | rexlimddv 3220 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
179 | 178 | rexlimdvaa 3214 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (∃𝑤 ∈ ℕ ∀𝑔 ∈ (𝑅 ↑m (1...𝑤))(〈𝑚, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
180 | 113, 179 | syl5bi 241 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
181 | 180 | expcom 414 |
. . . 4
⊢ (𝑚 ∈ ℕ → (𝜑 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))) |
182 | 181 | a2d 29 |
. . 3
⊢ (𝑚 ∈ ℕ → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑚, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) → (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈(𝑚 + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))) |
183 | 6, 11, 16, 21, 106, 182 | nnind 11991 |
. 2
⊢ (𝑀 ∈ ℕ → (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑀, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
184 | 1, 183 | mpcom 38 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑀, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |