MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmordi Structured version   Visualization version   GIF version

Theorem expmordi 13813
Description: Base ordering relationship for exponentiation. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
expmordi (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵) ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) < (𝐵𝑁))

Proof of Theorem expmordi
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . . . 6 (𝑎 = 1 → (𝐴𝑎) = (𝐴↑1))
2 oveq2 7263 . . . . . 6 (𝑎 = 1 → (𝐵𝑎) = (𝐵↑1))
31, 2breq12d 5083 . . . . 5 (𝑎 = 1 → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴↑1) < (𝐵↑1)))
43imbi2d 340 . . . 4 (𝑎 = 1 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑1) < (𝐵↑1))))
5 oveq2 7263 . . . . . 6 (𝑎 = 𝑏 → (𝐴𝑎) = (𝐴𝑏))
6 oveq2 7263 . . . . . 6 (𝑎 = 𝑏 → (𝐵𝑎) = (𝐵𝑏))
75, 6breq12d 5083 . . . . 5 (𝑎 = 𝑏 → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴𝑏) < (𝐵𝑏)))
87imbi2d 340 . . . 4 (𝑎 = 𝑏 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑏) < (𝐵𝑏))))
9 oveq2 7263 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴𝑎) = (𝐴↑(𝑏 + 1)))
10 oveq2 7263 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐵𝑎) = (𝐵↑(𝑏 + 1)))
119, 10breq12d 5083 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1))))
1211imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))))
13 oveq2 7263 . . . . . 6 (𝑎 = 𝑁 → (𝐴𝑎) = (𝐴𝑁))
14 oveq2 7263 . . . . . 6 (𝑎 = 𝑁 → (𝐵𝑎) = (𝐵𝑁))
1513, 14breq12d 5083 . . . . 5 (𝑎 = 𝑁 → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴𝑁) < (𝐵𝑁)))
1615imbi2d 340 . . . 4 (𝑎 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑁) < (𝐵𝑁))))
17 recn 10892 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
18 recn 10892 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
19 exp1 13716 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
20 exp1 13716 . . . . . . . 8 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
2119, 20breqan12d 5086 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑1) < (𝐵↑1) ↔ 𝐴 < 𝐵))
2217, 18, 21syl2an 595 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑1) < (𝐵↑1) ↔ 𝐴 < 𝐵))
2322biimpar 477 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (𝐴↑1) < (𝐵↑1))
2423adantrl 712 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑1) < (𝐵↑1))
25 simp2ll 1238 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐴 ∈ ℝ)
26 nnnn0 12170 . . . . . . . . . . 11 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
27263ad2ant1 1131 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝑏 ∈ ℕ0)
2825, 27reexpcld 13809 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴𝑏) ∈ ℝ)
29 simp2lr 1239 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐵 ∈ ℝ)
3029, 27reexpcld 13809 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐵𝑏) ∈ ℝ)
3128, 30jca 511 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → ((𝐴𝑏) ∈ ℝ ∧ (𝐵𝑏) ∈ ℝ))
32 simp2rl 1240 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 0 ≤ 𝐴)
3325, 27, 32expge0d 13810 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 0 ≤ (𝐴𝑏))
34 simp3 1136 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴𝑏) < (𝐵𝑏))
3533, 34jca 511 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (0 ≤ (𝐴𝑏) ∧ (𝐴𝑏) < (𝐵𝑏)))
36 simp2l 1197 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
37 simp2r 1198 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (0 ≤ 𝐴𝐴 < 𝐵))
38 ltmul12a 11761 . . . . . . . 8 (((((𝐴𝑏) ∈ ℝ ∧ (𝐵𝑏) ∈ ℝ) ∧ (0 ≤ (𝐴𝑏) ∧ (𝐴𝑏) < (𝐵𝑏))) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵))) → ((𝐴𝑏) · 𝐴) < ((𝐵𝑏) · 𝐵))
3931, 35, 36, 37, 38syl22anc 835 . . . . . . 7 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → ((𝐴𝑏) · 𝐴) < ((𝐵𝑏) · 𝐵))
4025recnd 10934 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐴 ∈ ℂ)
4140, 27expp1d 13793 . . . . . . 7 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴↑(𝑏 + 1)) = ((𝐴𝑏) · 𝐴))
4229recnd 10934 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐵 ∈ ℂ)
4342, 27expp1d 13793 . . . . . . 7 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐵↑(𝑏 + 1)) = ((𝐵𝑏) · 𝐵))
4439, 41, 433brtr4d 5102 . . . . . 6 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))
45443exp 1117 . . . . 5 (𝑏 ∈ ℕ → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → ((𝐴𝑏) < (𝐵𝑏) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))))
4645a2d 29 . . . 4 (𝑏 ∈ ℕ → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑏) < (𝐵𝑏)) → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))))
474, 8, 12, 16, 24, 46nnind 11921 . . 3 (𝑁 ∈ ℕ → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑁) < (𝐵𝑁)))
4847impcom 407 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) < (𝐵𝑁))
49483impa 1108 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵) ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) < (𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cn 11903  0cn0 12163  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  rpexpmord  13814
  Copyright terms: Public domain W3C validator