MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmordi Structured version   Visualization version   GIF version

Theorem expmordi 14132
Description: Base ordering relationship for exponentiation of nonnegative reals to a fixed positive integer power. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
expmordi (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵) ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) < (𝐵𝑁))

Proof of Theorem expmordi
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . . 6 (𝑎 = 1 → (𝐴𝑎) = (𝐴↑1))
2 oveq2 7395 . . . . . 6 (𝑎 = 1 → (𝐵𝑎) = (𝐵↑1))
31, 2breq12d 5120 . . . . 5 (𝑎 = 1 → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴↑1) < (𝐵↑1)))
43imbi2d 340 . . . 4 (𝑎 = 1 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑1) < (𝐵↑1))))
5 oveq2 7395 . . . . . 6 (𝑎 = 𝑏 → (𝐴𝑎) = (𝐴𝑏))
6 oveq2 7395 . . . . . 6 (𝑎 = 𝑏 → (𝐵𝑎) = (𝐵𝑏))
75, 6breq12d 5120 . . . . 5 (𝑎 = 𝑏 → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴𝑏) < (𝐵𝑏)))
87imbi2d 340 . . . 4 (𝑎 = 𝑏 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑏) < (𝐵𝑏))))
9 oveq2 7395 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴𝑎) = (𝐴↑(𝑏 + 1)))
10 oveq2 7395 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐵𝑎) = (𝐵↑(𝑏 + 1)))
119, 10breq12d 5120 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1))))
1211imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))))
13 oveq2 7395 . . . . . 6 (𝑎 = 𝑁 → (𝐴𝑎) = (𝐴𝑁))
14 oveq2 7395 . . . . . 6 (𝑎 = 𝑁 → (𝐵𝑎) = (𝐵𝑁))
1513, 14breq12d 5120 . . . . 5 (𝑎 = 𝑁 → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴𝑁) < (𝐵𝑁)))
1615imbi2d 340 . . . 4 (𝑎 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑁) < (𝐵𝑁))))
17 recn 11158 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
18 recn 11158 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
19 exp1 14032 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
20 exp1 14032 . . . . . . . 8 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
2119, 20breqan12d 5123 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑1) < (𝐵↑1) ↔ 𝐴 < 𝐵))
2217, 18, 21syl2an 596 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑1) < (𝐵↑1) ↔ 𝐴 < 𝐵))
2322biimpar 477 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (𝐴↑1) < (𝐵↑1))
2423adantrl 716 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑1) < (𝐵↑1))
25 simp2ll 1241 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐴 ∈ ℝ)
26 nnnn0 12449 . . . . . . . . . . 11 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
27263ad2ant1 1133 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝑏 ∈ ℕ0)
2825, 27reexpcld 14128 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴𝑏) ∈ ℝ)
29 simp2lr 1242 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐵 ∈ ℝ)
3029, 27reexpcld 14128 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐵𝑏) ∈ ℝ)
3128, 30jca 511 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → ((𝐴𝑏) ∈ ℝ ∧ (𝐵𝑏) ∈ ℝ))
32 simp2rl 1243 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 0 ≤ 𝐴)
3325, 27, 32expge0d 14129 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 0 ≤ (𝐴𝑏))
34 simp3 1138 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴𝑏) < (𝐵𝑏))
3533, 34jca 511 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (0 ≤ (𝐴𝑏) ∧ (𝐴𝑏) < (𝐵𝑏)))
36 simp2l 1200 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
37 simp2r 1201 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (0 ≤ 𝐴𝐴 < 𝐵))
38 ltmul12a 12038 . . . . . . . 8 (((((𝐴𝑏) ∈ ℝ ∧ (𝐵𝑏) ∈ ℝ) ∧ (0 ≤ (𝐴𝑏) ∧ (𝐴𝑏) < (𝐵𝑏))) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵))) → ((𝐴𝑏) · 𝐴) < ((𝐵𝑏) · 𝐵))
3931, 35, 36, 37, 38syl22anc 838 . . . . . . 7 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → ((𝐴𝑏) · 𝐴) < ((𝐵𝑏) · 𝐵))
4025recnd 11202 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐴 ∈ ℂ)
4140, 27expp1d 14112 . . . . . . 7 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴↑(𝑏 + 1)) = ((𝐴𝑏) · 𝐴))
4229recnd 11202 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐵 ∈ ℂ)
4342, 27expp1d 14112 . . . . . . 7 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐵↑(𝑏 + 1)) = ((𝐵𝑏) · 𝐵))
4439, 41, 433brtr4d 5139 . . . . . 6 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))
45443exp 1119 . . . . 5 (𝑏 ∈ ℕ → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → ((𝐴𝑏) < (𝐵𝑏) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))))
4645a2d 29 . . . 4 (𝑏 ∈ ℕ → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑏) < (𝐵𝑏)) → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))))
474, 8, 12, 16, 24, 46nnind 12204 . . 3 (𝑁 ∈ ℕ → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑁) < (𝐵𝑁)))
4847impcom 407 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) < (𝐵𝑁))
49483impa 1109 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵) ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) < (𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cn 12186  0cn0 12442  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-exp 14027
This theorem is referenced by:  rpexpmord  14133
  Copyright terms: Public domain W3C validator