Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0ex2N Structured version   Visualization version   GIF version

Theorem cdleme0ex2N 36032
Description: Part of proof of Lemma E in [Crawley] p. 113. Note that (𝑃 𝑢) = (𝑄 𝑢) is a shorter way to express 𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄). (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l = (le‘𝐾)
cdleme0.j = (join‘𝐾)
cdleme0.m = (meet‘𝐾)
cdleme0.a 𝐴 = (Atoms‘𝐾)
cdleme0.h 𝐻 = (LHyp‘𝐾)
cdleme0.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme0ex2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑢𝐴 ((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊))
Distinct variable groups:   𝑢,𝐴   𝑢,   𝑢,   𝑢,𝑃   𝑢,𝑄   𝑢,𝑈   𝑢,𝑊   𝑢,𝐻   𝑢,𝐾
Allowed substitution hint:   (𝑢)

Proof of Theorem cdleme0ex2N
StepHypRef Expression
1 simp1 1130 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2l 1241 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp2rl 1308 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑄𝐴)
4 simp3 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑃𝑄)
5 cdleme0.l . . . 4 = (le‘𝐾)
6 cdleme0.j . . . 4 = (join‘𝐾)
7 cdleme0.m . . . 4 = (meet‘𝐾)
8 cdleme0.a . . . 4 𝐴 = (Atoms‘𝐾)
9 cdleme0.h . . . 4 𝐻 = (LHyp‘𝐾)
10 cdleme0.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
115, 6, 7, 8, 9, 10cdleme0ex1N 36031 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑢𝐴 (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊))
121, 2, 3, 4, 11syl121anc 1481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑢𝐴 (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊))
13 simp11l 1368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝐾 ∈ HL)
14 hlcvl 35166 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
1513, 14syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝐾 ∈ CvLat)
16 simp2ll 1306 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑃𝐴)
17163ad2ant1 1127 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑃𝐴)
1833ad2ant1 1127 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑄𝐴)
19 simp2 1131 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢𝐴)
20 simp13 1247 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑃𝑄)
218, 5, 6cvlsupr2 35150 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑢𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑢) = (𝑄 𝑢) ↔ (𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄))))
2215, 17, 18, 19, 20, 21syl131anc 1489 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ((𝑃 𝑢) = (𝑄 𝑢) ↔ (𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄))))
23 simp3 1132 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢 𝑊)
24 simp2lr 1307 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ¬ 𝑃 𝑊)
25243ad2ant1 1127 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ¬ 𝑃 𝑊)
26 nbrne2 4807 . . . . . . . . . 10 ((𝑢 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑢𝑃)
2723, 25, 26syl2anc 573 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢𝑃)
28 simp2rr 1309 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ¬ 𝑄 𝑊)
29283ad2ant1 1127 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ¬ 𝑄 𝑊)
30 nbrne2 4807 . . . . . . . . . 10 ((𝑢 𝑊 ∧ ¬ 𝑄 𝑊) → 𝑢𝑄)
3123, 29, 30syl2anc 573 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢𝑄)
3227, 31jca 501 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → (𝑢𝑃𝑢𝑄))
3332biantrurd 522 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → (𝑢 (𝑃 𝑄) ↔ ((𝑢𝑃𝑢𝑄) ∧ 𝑢 (𝑃 𝑄))))
34 df-3an 1073 . . . . . . 7 ((𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄)) ↔ ((𝑢𝑃𝑢𝑄) ∧ 𝑢 (𝑃 𝑄)))
3533, 34syl6rbbr 279 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ((𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄)) ↔ 𝑢 (𝑃 𝑄)))
3622, 35bitrd 268 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ((𝑃 𝑢) = (𝑄 𝑢) ↔ 𝑢 (𝑃 𝑄)))
37363expia 1114 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴) → (𝑢 𝑊 → ((𝑃 𝑢) = (𝑄 𝑢) ↔ 𝑢 (𝑃 𝑄))))
3837pm5.32rd 567 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴) → (((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊) ↔ (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊)))
3938rexbidva 3197 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (∃𝑢𝐴 ((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊) ↔ ∃𝑢𝐴 (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊)))
4012, 39mpbird 247 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑢𝐴 ((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062   class class class wbr 4787  cfv 6030  (class class class)co 6796  lecple 16156  joincjn 17152  meetcmee 17153  Atomscatm 35070  CvLatclc 35072  HLchlt 35157  LHypclh 35791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34983  df-ol 34985  df-oml 34986  df-covers 35073  df-ats 35074  df-atl 35105  df-cvlat 35129  df-hlat 35158  df-lhyp 35795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator