Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0ex2N Structured version   Visualization version   GIF version

Theorem cdleme0ex2N 36811
Description: Part of proof of Lemma E in [Crawley] p. 113. Note that (𝑃 𝑢) = (𝑄 𝑢) is a shorter way to express 𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄). (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l = (le‘𝐾)
cdleme0.j = (join‘𝐾)
cdleme0.m = (meet‘𝐾)
cdleme0.a 𝐴 = (Atoms‘𝐾)
cdleme0.h 𝐻 = (LHyp‘𝐾)
cdleme0.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme0ex2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑢𝐴 ((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊))
Distinct variable groups:   𝑢,𝐴   𝑢,   𝑢,   𝑢,𝑃   𝑢,𝑄   𝑢,𝑈   𝑢,𝑊   𝑢,𝐻   𝑢,𝐾
Allowed substitution hint:   (𝑢)

Proof of Theorem cdleme0ex2N
StepHypRef Expression
1 simp1 1116 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2l 1179 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp2rl 1222 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑄𝐴)
4 simp3 1118 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑃𝑄)
5 cdleme0.l . . . 4 = (le‘𝐾)
6 cdleme0.j . . . 4 = (join‘𝐾)
7 cdleme0.m . . . 4 = (meet‘𝐾)
8 cdleme0.a . . . 4 𝐴 = (Atoms‘𝐾)
9 cdleme0.h . . . 4 𝐻 = (LHyp‘𝐾)
10 cdleme0.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
115, 6, 7, 8, 9, 10cdleme0ex1N 36810 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑢𝐴 (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊))
121, 2, 3, 4, 11syl121anc 1355 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑢𝐴 (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊))
13 simp11l 1264 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝐾 ∈ HL)
14 hlcvl 35946 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
1513, 14syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝐾 ∈ CvLat)
16 simp2ll 1220 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑃𝐴)
17163ad2ant1 1113 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑃𝐴)
1833ad2ant1 1113 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑄𝐴)
19 simp2 1117 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢𝐴)
20 simp13 1185 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑃𝑄)
218, 5, 6cvlsupr2 35930 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑢𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑢) = (𝑄 𝑢) ↔ (𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄))))
2215, 17, 18, 19, 20, 21syl131anc 1363 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ((𝑃 𝑢) = (𝑄 𝑢) ↔ (𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄))))
23 simp3 1118 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢 𝑊)
24 simp2lr 1221 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ¬ 𝑃 𝑊)
25243ad2ant1 1113 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ¬ 𝑃 𝑊)
26 nbrne2 4949 . . . . . . . . . 10 ((𝑢 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑢𝑃)
2723, 25, 26syl2anc 576 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢𝑃)
28 simp2rr 1223 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ¬ 𝑄 𝑊)
29283ad2ant1 1113 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ¬ 𝑄 𝑊)
30 nbrne2 4949 . . . . . . . . . 10 ((𝑢 𝑊 ∧ ¬ 𝑄 𝑊) → 𝑢𝑄)
3123, 29, 30syl2anc 576 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢𝑄)
3227, 31jca 504 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → (𝑢𝑃𝑢𝑄))
3332biantrurd 525 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → (𝑢 (𝑃 𝑄) ↔ ((𝑢𝑃𝑢𝑄) ∧ 𝑢 (𝑃 𝑄))))
34 df-3an 1070 . . . . . . 7 ((𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄)) ↔ ((𝑢𝑃𝑢𝑄) ∧ 𝑢 (𝑃 𝑄)))
3533, 34syl6rbbr 282 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ((𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄)) ↔ 𝑢 (𝑃 𝑄)))
3622, 35bitrd 271 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ((𝑃 𝑢) = (𝑄 𝑢) ↔ 𝑢 (𝑃 𝑄)))
37363expia 1101 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴) → (𝑢 𝑊 → ((𝑃 𝑢) = (𝑄 𝑢) ↔ 𝑢 (𝑃 𝑄))))
3837pm5.32rd 570 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴) → (((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊) ↔ (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊)))
3938rexbidva 3241 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (∃𝑢𝐴 ((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊) ↔ ∃𝑢𝐴 (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊)))
4012, 39mpbird 249 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑢𝐴 ((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967  wrex 3089   class class class wbr 4929  cfv 6188  (class class class)co 6976  lecple 16428  joincjn 17412  meetcmee 17413  Atomscatm 35850  CvLatclc 35852  HLchlt 35937  LHypclh 36571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-proset 17396  df-poset 17414  df-plt 17426  df-lub 17442  df-glb 17443  df-join 17444  df-meet 17445  df-p0 17507  df-p1 17508  df-lat 17514  df-clat 17576  df-oposet 35763  df-ol 35765  df-oml 35766  df-covers 35853  df-ats 35854  df-atl 35885  df-cvlat 35909  df-hlat 35938  df-lhyp 36575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator