Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0ex2N Structured version   Visualization version   GIF version

Theorem cdleme0ex2N 37536
 Description: Part of proof of Lemma E in [Crawley] p. 113. Note that (𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) is a shorter way to express 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ (𝑃 ∨ 𝑄). (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l = (le‘𝐾)
cdleme0.j = (join‘𝐾)
cdleme0.m = (meet‘𝐾)
cdleme0.a 𝐴 = (Atoms‘𝐾)
cdleme0.h 𝐻 = (LHyp‘𝐾)
cdleme0.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme0ex2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑢𝐴 ((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊))
Distinct variable groups:   𝑢,𝐴   𝑢,   𝑢,   𝑢,𝑃   𝑢,𝑄   𝑢,𝑈   𝑢,𝑊   𝑢,𝐻   𝑢,𝐾
Allowed substitution hint:   (𝑢)

Proof of Theorem cdleme0ex2N
StepHypRef Expression
1 simp1 1133 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2l 1196 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp2rl 1239 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑄𝐴)
4 simp3 1135 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑃𝑄)
5 cdleme0.l . . . 4 = (le‘𝐾)
6 cdleme0.j . . . 4 = (join‘𝐾)
7 cdleme0.m . . . 4 = (meet‘𝐾)
8 cdleme0.a . . . 4 𝐴 = (Atoms‘𝐾)
9 cdleme0.h . . . 4 𝐻 = (LHyp‘𝐾)
10 cdleme0.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
115, 6, 7, 8, 9, 10cdleme0ex1N 37535 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑢𝐴 (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊))
121, 2, 3, 4, 11syl121anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑢𝐴 (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊))
13 simp11l 1281 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝐾 ∈ HL)
14 hlcvl 36671 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
1513, 14syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝐾 ∈ CvLat)
16 simp2ll 1237 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑃𝐴)
17163ad2ant1 1130 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑃𝐴)
1833ad2ant1 1130 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑄𝐴)
19 simp2 1134 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢𝐴)
20 simp13 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑃𝑄)
218, 5, 6cvlsupr2 36655 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑢𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑢) = (𝑄 𝑢) ↔ (𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄))))
2215, 17, 18, 19, 20, 21syl131anc 1380 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ((𝑃 𝑢) = (𝑄 𝑢) ↔ (𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄))))
23 df-3an 1086 . . . . . . 7 ((𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄)) ↔ ((𝑢𝑃𝑢𝑄) ∧ 𝑢 (𝑃 𝑄)))
24 simp3 1135 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢 𝑊)
25 simp2lr 1238 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ¬ 𝑃 𝑊)
26253ad2ant1 1130 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ¬ 𝑃 𝑊)
27 nbrne2 5050 . . . . . . . . . 10 ((𝑢 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑢𝑃)
2824, 26, 27syl2anc 587 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢𝑃)
29 simp2rr 1240 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ¬ 𝑄 𝑊)
30293ad2ant1 1130 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ¬ 𝑄 𝑊)
31 nbrne2 5050 . . . . . . . . . 10 ((𝑢 𝑊 ∧ ¬ 𝑄 𝑊) → 𝑢𝑄)
3224, 30, 31syl2anc 587 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢𝑄)
3328, 32jca 515 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → (𝑢𝑃𝑢𝑄))
3433biantrurd 536 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → (𝑢 (𝑃 𝑄) ↔ ((𝑢𝑃𝑢𝑄) ∧ 𝑢 (𝑃 𝑄))))
3523, 34bitr4id 293 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ((𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄)) ↔ 𝑢 (𝑃 𝑄)))
3622, 35bitrd 282 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ((𝑃 𝑢) = (𝑄 𝑢) ↔ 𝑢 (𝑃 𝑄)))
37363expia 1118 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴) → (𝑢 𝑊 → ((𝑃 𝑢) = (𝑄 𝑢) ↔ 𝑢 (𝑃 𝑄))))
3837pm5.32rd 581 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴) → (((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊) ↔ (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊)))
3938rexbidva 3255 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (∃𝑢𝐴 ((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊) ↔ ∃𝑢𝐴 (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊)))
4012, 39mpbird 260 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑢𝐴 ((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∃wrex 3107   class class class wbr 5030  ‘cfv 6324  (class class class)co 7135  lecple 16566  joincjn 17548  meetcmee 17549  Atomscatm 36575  CvLatclc 36577  HLchlt 36662  LHypclh 37296 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-oposet 36488  df-ol 36490  df-oml 36491  df-covers 36578  df-ats 36579  df-atl 36610  df-cvlat 36634  df-hlat 36663  df-lhyp 37300 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator