Proof of Theorem cdleme0ex2N
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1137 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | simp2l 1200 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 3 |  | simp2rl 1243 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) | 
| 4 |  | simp3 1139 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | 
| 5 |  | cdleme0.l | . . . 4
⊢  ≤ =
(le‘𝐾) | 
| 6 |  | cdleme0.j | . . . 4
⊢  ∨ =
(join‘𝐾) | 
| 7 |  | cdleme0.m | . . . 4
⊢  ∧ =
(meet‘𝐾) | 
| 8 |  | cdleme0.a | . . . 4
⊢ 𝐴 = (Atoms‘𝐾) | 
| 9 |  | cdleme0.h | . . . 4
⊢ 𝐻 = (LHyp‘𝐾) | 
| 10 |  | cdleme0.u | . . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | 
| 11 | 5, 6, 7, 8, 9, 10 | cdleme0ex1N 40225 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑢 ∈ 𝐴 (𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑊)) | 
| 12 | 1, 2, 3, 4, 11 | syl121anc 1377 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑢 ∈ 𝐴 (𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑊)) | 
| 13 |  | simp11l 1285 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝐾 ∈ HL) | 
| 14 |  | hlcvl 39360 | . . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | 
| 15 | 13, 14 | syl 17 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝐾 ∈ CvLat) | 
| 16 |  | simp2ll 1241 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) | 
| 17 | 16 | 3ad2ant1 1134 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝑃 ∈ 𝐴) | 
| 18 | 3 | 3ad2ant1 1134 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝑄 ∈ 𝐴) | 
| 19 |  | simp2 1138 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝑢 ∈ 𝐴) | 
| 20 |  | simp13 1206 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝑃 ≠ 𝑄) | 
| 21 | 8, 5, 6 | cvlsupr2 39344 | . . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) ↔ (𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ (𝑃 ∨ 𝑄)))) | 
| 22 | 15, 17, 18, 19, 20, 21 | syl131anc 1385 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → ((𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) ↔ (𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ (𝑃 ∨ 𝑄)))) | 
| 23 |  | df-3an 1089 | . . . . . . 7
⊢ ((𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ (𝑃 ∨ 𝑄)) ↔ ((𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄) ∧ 𝑢 ≤ (𝑃 ∨ 𝑄))) | 
| 24 |  | simp3 1139 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝑢 ≤ 𝑊) | 
| 25 |  | simp2lr 1242 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ¬ 𝑃 ≤ 𝑊) | 
| 26 | 25 | 3ad2ant1 1134 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → ¬ 𝑃 ≤ 𝑊) | 
| 27 |  | nbrne2 5163 | . . . . . . . . . 10
⊢ ((𝑢 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊) → 𝑢 ≠ 𝑃) | 
| 28 | 24, 26, 27 | syl2anc 584 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝑢 ≠ 𝑃) | 
| 29 |  | simp2rr 1244 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ¬ 𝑄 ≤ 𝑊) | 
| 30 | 29 | 3ad2ant1 1134 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → ¬ 𝑄 ≤ 𝑊) | 
| 31 |  | nbrne2 5163 | . . . . . . . . . 10
⊢ ((𝑢 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊) → 𝑢 ≠ 𝑄) | 
| 32 | 24, 30, 31 | syl2anc 584 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝑢 ≠ 𝑄) | 
| 33 | 28, 32 | jca 511 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → (𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄)) | 
| 34 | 33 | biantrurd 532 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → (𝑢 ≤ (𝑃 ∨ 𝑄) ↔ ((𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄) ∧ 𝑢 ≤ (𝑃 ∨ 𝑄)))) | 
| 35 | 23, 34 | bitr4id 290 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → ((𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ (𝑃 ∨ 𝑄)) ↔ 𝑢 ≤ (𝑃 ∨ 𝑄))) | 
| 36 | 22, 35 | bitrd 279 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → ((𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) ↔ 𝑢 ≤ (𝑃 ∨ 𝑄))) | 
| 37 | 36 | 3expia 1122 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴) → (𝑢 ≤ 𝑊 → ((𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) ↔ 𝑢 ≤ (𝑃 ∨ 𝑄)))) | 
| 38 | 37 | pm5.32rd 578 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴) → (((𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) ∧ 𝑢 ≤ 𝑊) ↔ (𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑊))) | 
| 39 | 38 | rexbidva 3177 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (∃𝑢 ∈ 𝐴 ((𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) ∧ 𝑢 ≤ 𝑊) ↔ ∃𝑢 ∈ 𝐴 (𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑊))) | 
| 40 | 12, 39 | mpbird 257 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑢 ∈ 𝐴 ((𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) ∧ 𝑢 ≤ 𝑊)) |