Proof of Theorem cdleme0ex2N
Step | Hyp | Ref
| Expression |
1 | | simp1 1138 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp2l 1201 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
3 | | simp2rl 1244 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) |
4 | | simp3 1140 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) |
5 | | cdleme0.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
6 | | cdleme0.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
7 | | cdleme0.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
8 | | cdleme0.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
9 | | cdleme0.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
10 | | cdleme0.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
11 | 5, 6, 7, 8, 9, 10 | cdleme0ex1N 37974 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑢 ∈ 𝐴 (𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑊)) |
12 | 1, 2, 3, 4, 11 | syl121anc 1377 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑢 ∈ 𝐴 (𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑊)) |
13 | | simp11l 1286 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝐾 ∈ HL) |
14 | | hlcvl 37110 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
15 | 13, 14 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝐾 ∈ CvLat) |
16 | | simp2ll 1242 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) |
17 | 16 | 3ad2ant1 1135 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝑃 ∈ 𝐴) |
18 | 3 | 3ad2ant1 1135 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝑄 ∈ 𝐴) |
19 | | simp2 1139 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝑢 ∈ 𝐴) |
20 | | simp13 1207 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝑃 ≠ 𝑄) |
21 | 8, 5, 6 | cvlsupr2 37094 |
. . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) ↔ (𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ (𝑃 ∨ 𝑄)))) |
22 | 15, 17, 18, 19, 20, 21 | syl131anc 1385 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → ((𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) ↔ (𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ (𝑃 ∨ 𝑄)))) |
23 | | df-3an 1091 |
. . . . . . 7
⊢ ((𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ (𝑃 ∨ 𝑄)) ↔ ((𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄) ∧ 𝑢 ≤ (𝑃 ∨ 𝑄))) |
24 | | simp3 1140 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝑢 ≤ 𝑊) |
25 | | simp2lr 1243 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ¬ 𝑃 ≤ 𝑊) |
26 | 25 | 3ad2ant1 1135 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → ¬ 𝑃 ≤ 𝑊) |
27 | | nbrne2 5073 |
. . . . . . . . . 10
⊢ ((𝑢 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊) → 𝑢 ≠ 𝑃) |
28 | 24, 26, 27 | syl2anc 587 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝑢 ≠ 𝑃) |
29 | | simp2rr 1245 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ¬ 𝑄 ≤ 𝑊) |
30 | 29 | 3ad2ant1 1135 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → ¬ 𝑄 ≤ 𝑊) |
31 | | nbrne2 5073 |
. . . . . . . . . 10
⊢ ((𝑢 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊) → 𝑢 ≠ 𝑄) |
32 | 24, 30, 31 | syl2anc 587 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → 𝑢 ≠ 𝑄) |
33 | 28, 32 | jca 515 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → (𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄)) |
34 | 33 | biantrurd 536 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → (𝑢 ≤ (𝑃 ∨ 𝑄) ↔ ((𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄) ∧ 𝑢 ≤ (𝑃 ∨ 𝑄)))) |
35 | 23, 34 | bitr4id 293 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → ((𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ (𝑃 ∨ 𝑄)) ↔ 𝑢 ≤ (𝑃 ∨ 𝑄))) |
36 | 22, 35 | bitrd 282 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊) → ((𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) ↔ 𝑢 ≤ (𝑃 ∨ 𝑄))) |
37 | 36 | 3expia 1123 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴) → (𝑢 ≤ 𝑊 → ((𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) ↔ 𝑢 ≤ (𝑃 ∨ 𝑄)))) |
38 | 37 | pm5.32rd 581 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) ∧ 𝑢 ∈ 𝐴) → (((𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) ∧ 𝑢 ≤ 𝑊) ↔ (𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑊))) |
39 | 38 | rexbidva 3215 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (∃𝑢 ∈ 𝐴 ((𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) ∧ 𝑢 ≤ 𝑊) ↔ ∃𝑢 ∈ 𝐴 (𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑊))) |
40 | 12, 39 | mpbird 260 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑢 ∈ 𝐴 ((𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) ∧ 𝑢 ≤ 𝑊)) |