Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0ex2N Structured version   Visualization version   GIF version

Theorem cdleme0ex2N 40206
Description: Part of proof of Lemma E in [Crawley] p. 113. Note that (𝑃 𝑢) = (𝑄 𝑢) is a shorter way to express 𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄). (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l = (le‘𝐾)
cdleme0.j = (join‘𝐾)
cdleme0.m = (meet‘𝐾)
cdleme0.a 𝐴 = (Atoms‘𝐾)
cdleme0.h 𝐻 = (LHyp‘𝐾)
cdleme0.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme0ex2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑢𝐴 ((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊))
Distinct variable groups:   𝑢,𝐴   𝑢,   𝑢,   𝑢,𝑃   𝑢,𝑄   𝑢,𝑈   𝑢,𝑊   𝑢,𝐻   𝑢,𝐾
Allowed substitution hint:   (𝑢)

Proof of Theorem cdleme0ex2N
StepHypRef Expression
1 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2l 1200 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp2rl 1243 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑄𝐴)
4 simp3 1138 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑃𝑄)
5 cdleme0.l . . . 4 = (le‘𝐾)
6 cdleme0.j . . . 4 = (join‘𝐾)
7 cdleme0.m . . . 4 = (meet‘𝐾)
8 cdleme0.a . . . 4 𝐴 = (Atoms‘𝐾)
9 cdleme0.h . . . 4 𝐻 = (LHyp‘𝐾)
10 cdleme0.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
115, 6, 7, 8, 9, 10cdleme0ex1N 40205 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑢𝐴 (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊))
121, 2, 3, 4, 11syl121anc 1377 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑢𝐴 (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊))
13 simp11l 1285 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝐾 ∈ HL)
14 hlcvl 39340 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
1513, 14syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝐾 ∈ CvLat)
16 simp2ll 1241 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑃𝐴)
17163ad2ant1 1133 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑃𝐴)
1833ad2ant1 1133 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑄𝐴)
19 simp2 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢𝐴)
20 simp13 1206 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑃𝑄)
218, 5, 6cvlsupr2 39324 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑢𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑢) = (𝑄 𝑢) ↔ (𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄))))
2215, 17, 18, 19, 20, 21syl131anc 1385 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ((𝑃 𝑢) = (𝑄 𝑢) ↔ (𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄))))
23 df-3an 1088 . . . . . . 7 ((𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄)) ↔ ((𝑢𝑃𝑢𝑄) ∧ 𝑢 (𝑃 𝑄)))
24 simp3 1138 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢 𝑊)
25 simp2lr 1242 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ¬ 𝑃 𝑊)
26253ad2ant1 1133 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ¬ 𝑃 𝑊)
27 nbrne2 5115 . . . . . . . . . 10 ((𝑢 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑢𝑃)
2824, 26, 27syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢𝑃)
29 simp2rr 1244 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ¬ 𝑄 𝑊)
30293ad2ant1 1133 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ¬ 𝑄 𝑊)
31 nbrne2 5115 . . . . . . . . . 10 ((𝑢 𝑊 ∧ ¬ 𝑄 𝑊) → 𝑢𝑄)
3224, 30, 31syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → 𝑢𝑄)
3328, 32jca 511 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → (𝑢𝑃𝑢𝑄))
3433biantrurd 532 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → (𝑢 (𝑃 𝑄) ↔ ((𝑢𝑃𝑢𝑄) ∧ 𝑢 (𝑃 𝑄))))
3523, 34bitr4id 290 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ((𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄)) ↔ 𝑢 (𝑃 𝑄)))
3622, 35bitrd 279 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴𝑢 𝑊) → ((𝑃 𝑢) = (𝑄 𝑢) ↔ 𝑢 (𝑃 𝑄)))
37363expia 1121 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴) → (𝑢 𝑊 → ((𝑃 𝑢) = (𝑄 𝑢) ↔ 𝑢 (𝑃 𝑄))))
3837pm5.32rd 578 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) ∧ 𝑢𝐴) → (((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊) ↔ (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊)))
3938rexbidva 3151 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (∃𝑢𝐴 ((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊) ↔ ∃𝑢𝐴 (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊)))
4012, 39mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑢𝐴 ((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5095  cfv 6486  (class class class)co 7353  lecple 17186  joincjn 18235  meetcmee 18236  Atomscatm 39244  CvLatclc 39246  HLchlt 39331  LHypclh 39966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-lhyp 39970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator