Step | Hyp | Ref
| Expression |
1 | | simp11l 1285 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΎ β HL) |
2 | 1 | hllatd 37829 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΎ β Lat) |
3 | | simp2ll 1241 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π
β π΄) |
4 | | eqid 2737 |
. . . . . . 7
β’
(BaseβπΎ) =
(BaseβπΎ) |
5 | | cdleme4.a |
. . . . . . 7
β’ π΄ = (AtomsβπΎ) |
6 | 4, 5 | atbase 37754 |
. . . . . 6
β’ (π
β π΄ β π
β (BaseβπΎ)) |
7 | 3, 6 | syl 17 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π
β (BaseβπΎ)) |
8 | | hlop 37827 |
. . . . . 6
β’ (πΎ β HL β πΎ β OP) |
9 | | eqid 2737 |
. . . . . . 7
β’
(0.βπΎ) =
(0.βπΎ) |
10 | 4, 9 | op0cl 37649 |
. . . . . 6
β’ (πΎ β OP β
(0.βπΎ) β
(BaseβπΎ)) |
11 | 1, 8, 10 | 3syl 18 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (0.βπΎ) β (BaseβπΎ)) |
12 | | cdleme4.j |
. . . . . 6
β’ β¨ =
(joinβπΎ) |
13 | 4, 12 | latjcl 18329 |
. . . . 5
β’ ((πΎ β Lat β§ π
β (BaseβπΎ) β§ (0.βπΎ) β (BaseβπΎ)) β (π
β¨ (0.βπΎ)) β (BaseβπΎ)) |
14 | 2, 7, 11, 13 | syl3anc 1372 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π
β¨ (0.βπΎ)) β (BaseβπΎ)) |
15 | | cdleme4.g |
. . . . . 6
β’ πΊ = ((π β¨ π) β§ (πΉ β¨ ((π
β¨ π) β§ π))) |
16 | | simp12l 1287 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
17 | | simp13l 1289 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
18 | 4, 12, 5 | hlatjcl 37832 |
. . . . . . . 8
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) β (BaseβπΎ)) |
19 | 1, 16, 17, 18 | syl3anc 1372 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β¨ π) β (BaseβπΎ)) |
20 | | simp11 1204 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΎ β HL β§ π β π»)) |
21 | | simp2rl 1243 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
22 | | cdleme4.l |
. . . . . . . . . 10
β’ β€ =
(leβπΎ) |
23 | | cdleme4.m |
. . . . . . . . . 10
β’ β§ =
(meetβπΎ) |
24 | | cdleme4.h |
. . . . . . . . . 10
β’ π» = (LHypβπΎ) |
25 | | cdleme4.u |
. . . . . . . . . 10
β’ π = ((π β¨ π) β§ π) |
26 | | cdleme4.f |
. . . . . . . . . 10
β’ πΉ = ((π β¨ π) β§ (π β¨ ((π β¨ π) β§ π))) |
27 | 22, 12, 23, 5, 24, 25, 26, 4 | cdleme1b 38692 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β πΉ β (BaseβπΎ)) |
28 | 20, 16, 17, 21, 27 | syl13anc 1373 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΉ β (BaseβπΎ)) |
29 | 4, 12, 5 | hlatjcl 37832 |
. . . . . . . . . 10
β’ ((πΎ β HL β§ π
β π΄ β§ π β π΄) β (π
β¨ π) β (BaseβπΎ)) |
30 | 1, 3, 21, 29 | syl3anc 1372 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π
β¨ π) β (BaseβπΎ)) |
31 | | simp11r 1286 |
. . . . . . . . . 10
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π») |
32 | 4, 24 | lhpbase 38464 |
. . . . . . . . . 10
β’ (π β π» β π β (BaseβπΎ)) |
33 | 31, 32 | syl 17 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β (BaseβπΎ)) |
34 | 4, 23 | latmcl 18330 |
. . . . . . . . 9
β’ ((πΎ β Lat β§ (π
β¨ π) β (BaseβπΎ) β§ π β (BaseβπΎ)) β ((π
β¨ π) β§ π) β (BaseβπΎ)) |
35 | 2, 30, 33, 34 | syl3anc 1372 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((π
β¨ π) β§ π) β (BaseβπΎ)) |
36 | 4, 12 | latjcl 18329 |
. . . . . . . 8
β’ ((πΎ β Lat β§ πΉ β (BaseβπΎ) β§ ((π
β¨ π) β§ π) β (BaseβπΎ)) β (πΉ β¨ ((π
β¨ π) β§ π)) β (BaseβπΎ)) |
37 | 2, 28, 35, 36 | syl3anc 1372 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΉ β¨ ((π
β¨ π) β§ π)) β (BaseβπΎ)) |
38 | 4, 23 | latmcl 18330 |
. . . . . . 7
β’ ((πΎ β Lat β§ (π β¨ π) β (BaseβπΎ) β§ (πΉ β¨ ((π
β¨ π) β§ π)) β (BaseβπΎ)) β ((π β¨ π) β§ (πΉ β¨ ((π
β¨ π) β§ π))) β (BaseβπΎ)) |
39 | 2, 19, 37, 38 | syl3anc 1372 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((π β¨ π) β§ (πΉ β¨ ((π
β¨ π) β§ π))) β (BaseβπΎ)) |
40 | 15, 39 | eqeltrid 2842 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΊ β (BaseβπΎ)) |
41 | 4, 12 | latjcl 18329 |
. . . . 5
β’ ((πΎ β Lat β§ π
β (BaseβπΎ) β§ πΊ β (BaseβπΎ)) β (π
β¨ πΊ) β (BaseβπΎ)) |
42 | 2, 7, 40, 41 | syl3anc 1372 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π
β¨ πΊ) β (BaseβπΎ)) |
43 | 4, 22, 23 | latmle2 18355 |
. . . . . . . . 9
β’ ((πΎ β Lat β§ (π β¨ π) β (BaseβπΎ) β§ π β (BaseβπΎ)) β ((π β¨ π) β§ π) β€ π) |
44 | 2, 19, 33, 43 | syl3anc 1372 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((π β¨ π) β§ π) β€ π) |
45 | 25, 44 | eqbrtrid 5141 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β€ π) |
46 | | simp2lr 1242 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β Β¬ π
β€ π) |
47 | | nbrne2 5126 |
. . . . . . . 8
β’ ((π β€ π β§ Β¬ π
β€ π) β π β π
) |
48 | 47 | necomd 3000 |
. . . . . . 7
β’ ((π β€ π β§ Β¬ π
β€ π) β π
β π) |
49 | 45, 46, 48 | syl2anc 585 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π
β π) |
50 | | simp12 1205 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β π΄ β§ Β¬ π β€ π)) |
51 | | simp31 1210 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π) |
52 | 22, 12, 23, 5, 24, 25 | lhpat2 38511 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π΄) |
53 | 20, 50, 17, 51, 52 | syl112anc 1375 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
54 | | eqid 2737 |
. . . . . . . 8
β’ ( β
βπΎ) = ( β
βπΎ) |
55 | 12, 54, 5 | atcvr1 37883 |
. . . . . . 7
β’ ((πΎ β HL β§ π
β π΄ β§ π β π΄) β (π
β π β π
( β βπΎ)(π
β¨ π))) |
56 | 1, 3, 53, 55 | syl3anc 1372 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π
β π β π
( β βπΎ)(π
β¨ π))) |
57 | 49, 56 | mpbid 231 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π
( β βπΎ)(π
β¨ π)) |
58 | | hlol 37826 |
. . . . . . 7
β’ (πΎ β HL β πΎ β OL) |
59 | 1, 58 | syl 17 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΎ β OL) |
60 | 4, 12, 9 | olj01 37690 |
. . . . . 6
β’ ((πΎ β OL β§ π
β (BaseβπΎ)) β (π
β¨ (0.βπΎ)) = π
) |
61 | 59, 7, 60 | syl2anc 585 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π
β¨ (0.βπΎ)) = π
) |
62 | | simp2l 1200 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π
β π΄ β§ Β¬ π
β€ π)) |
63 | | simp2r 1201 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β π΄ β§ Β¬ π β€ π)) |
64 | | simp32 1211 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π
β€ (π β¨ π)) |
65 | 22, 12, 23, 5, 24, 25, 26, 15 | cdleme5 38706 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β π΄ β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ π
β€ (π β¨ π))) β (π
β¨ πΊ) = (π β¨ π)) |
66 | 20, 16, 17, 62, 63, 64, 65 | syl132anc 1389 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π
β¨ πΊ) = (π β¨ π)) |
67 | 22, 12, 23, 5, 24, 25 | cdleme4 38704 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β π΄ β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ π
β€ (π β¨ π)) β (π β¨ π) = (π
β¨ π)) |
68 | 20, 16, 17, 62, 64, 67 | syl131anc 1384 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β¨ π) = (π
β¨ π)) |
69 | 66, 68 | eqtrd 2777 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π
β¨ πΊ) = (π
β¨ π)) |
70 | 57, 61, 69 | 3brtr4d 5138 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π
β¨ (0.βπΎ))( β βπΎ)(π
β¨ πΊ)) |
71 | 4, 54 | cvrne 37746 |
. . . 4
β’ (((πΎ β HL β§ (π
β¨ (0.βπΎ)) β (BaseβπΎ) β§ (π
β¨ πΊ) β (BaseβπΎ)) β§ (π
β¨ (0.βπΎ))( β βπΎ)(π
β¨ πΊ)) β (π
β¨ (0.βπΎ)) β (π
β¨ πΊ)) |
72 | 1, 14, 42, 70, 71 | syl31anc 1374 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π
β¨ (0.βπΎ)) β (π
β¨ πΊ)) |
73 | | oveq2 7366 |
. . . 4
β’
((0.βπΎ) =
πΊ β (π
β¨ (0.βπΎ)) = (π
β¨ πΊ)) |
74 | 73 | necon3i 2977 |
. . 3
β’ ((π
β¨ (0.βπΎ)) β (π
β¨ πΊ) β (0.βπΎ) β πΊ) |
75 | 72, 74 | syl 17 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (0.βπΎ) β πΊ) |
76 | 75 | necomd 3000 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΊ β (0.βπΎ)) |