MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrf1 Structured version   Visualization version   GIF version

Theorem mvrf1 21104
Description: The power series variable function is injective if the base ring is nonzero. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
mvrf.s 𝑆 = (𝐼 mPwSer 𝑅)
mvrf.v 𝑉 = (𝐼 mVar 𝑅)
mvrf.b 𝐵 = (Base‘𝑆)
mvrf.i (𝜑𝐼𝑊)
mvrf.r (𝜑𝑅 ∈ Ring)
mvrf1.z 0 = (0g𝑅)
mvrf1.o 1 = (1r𝑅)
mvrf1.n (𝜑10 )
Assertion
Ref Expression
mvrf1 (𝜑𝑉:𝐼1-1𝐵)

Proof of Theorem mvrf1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrf.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 mvrf.v . . 3 𝑉 = (𝐼 mVar 𝑅)
3 mvrf.b . . 3 𝐵 = (Base‘𝑆)
4 mvrf.i . . 3 (𝜑𝐼𝑊)
5 mvrf.r . . 3 (𝜑𝑅 ∈ Ring)
61, 2, 3, 4, 5mvrf 21103 . 2 (𝜑𝑉:𝐼𝐵)
7 mvrf1.n . . . . . 6 (𝜑10 )
87adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → 10 )
9 simp2r 1198 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → (𝑉𝑥) = (𝑉𝑦))
109fveq1d 6758 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑉𝑥)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) = ((𝑉𝑦)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))))
11 eqid 2738 . . . . . . . . . 10 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
12 mvrf1.z . . . . . . . . . 10 0 = (0g𝑅)
13 mvrf1.o . . . . . . . . . 10 1 = (1r𝑅)
1443ad2ant1 1131 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝐼𝑊)
1553ad2ant1 1131 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝑅 ∈ Ring)
16 simp2ll 1238 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝑥𝐼)
172, 11, 12, 13, 14, 15, 16mvrid 21102 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑉𝑥)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) = 1 )
18 simp2lr 1239 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝑦𝐼)
19 1nn0 12179 . . . . . . . . . . 11 1 ∈ ℕ0
2011snifpsrbag 21035 . . . . . . . . . . 11 ((𝐼𝑊 ∧ 1 ∈ ℕ0) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2114, 19, 20sylancl 585 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
222, 11, 12, 13, 14, 15, 18, 21mvrval2 21101 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑉𝑦)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) = if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ))
2310, 17, 223eqtr3d 2786 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 1 = if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ))
24 simp3 1136 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ¬ 𝑥 = 𝑦)
25 mpteqb 6876 . . . . . . . . . . . . . 14 (∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) ∈ ℕ0 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) ↔ ∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0)))
26 0nn0 12178 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
2719, 26ifcli 4503 . . . . . . . . . . . . . . 15 if(𝑧 = 𝑥, 1, 0) ∈ ℕ0
2827a1i 11 . . . . . . . . . . . . . 14 (𝑧𝐼 → if(𝑧 = 𝑥, 1, 0) ∈ ℕ0)
2925, 28mprg 3077 . . . . . . . . . . . . 13 ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) ↔ ∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0))
30 iftrue 4462 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → if(𝑧 = 𝑥, 1, 0) = 1)
31 eqeq1 2742 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑧 = 𝑦𝑥 = 𝑦))
3231ifbid 4479 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → if(𝑧 = 𝑦, 1, 0) = if(𝑥 = 𝑦, 1, 0))
3330, 32eqeq12d 2754 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0) ↔ 1 = if(𝑥 = 𝑦, 1, 0)))
3433rspcv 3547 . . . . . . . . . . . . 13 (𝑥𝐼 → (∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0) → 1 = if(𝑥 = 𝑦, 1, 0)))
3529, 34syl5bi 241 . . . . . . . . . . . 12 (𝑥𝐼 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → 1 = if(𝑥 = 𝑦, 1, 0)))
3616, 35syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → 1 = if(𝑥 = 𝑦, 1, 0)))
37 ax-1ne0 10871 . . . . . . . . . . . . 13 1 ≠ 0
38 eqeq1 2742 . . . . . . . . . . . . . 14 (1 = if(𝑥 = 𝑦, 1, 0) → (1 = 0 ↔ if(𝑥 = 𝑦, 1, 0) = 0))
3938necon3abid 2979 . . . . . . . . . . . . 13 (1 = if(𝑥 = 𝑦, 1, 0) → (1 ≠ 0 ↔ ¬ if(𝑥 = 𝑦, 1, 0) = 0))
4037, 39mpbii 232 . . . . . . . . . . . 12 (1 = if(𝑥 = 𝑦, 1, 0) → ¬ if(𝑥 = 𝑦, 1, 0) = 0)
41 iffalse 4465 . . . . . . . . . . . 12 𝑥 = 𝑦 → if(𝑥 = 𝑦, 1, 0) = 0)
4240, 41nsyl2 141 . . . . . . . . . . 11 (1 = if(𝑥 = 𝑦, 1, 0) → 𝑥 = 𝑦)
4336, 42syl6 35 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → 𝑥 = 𝑦))
4424, 43mtod 197 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ¬ (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)))
45 iffalse 4465 . . . . . . . . 9 (¬ (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ) = 0 )
4644, 45syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ) = 0 )
4723, 46eqtrd 2778 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 1 = 0 )
48473expia 1119 . . . . . 6 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → (¬ 𝑥 = 𝑦1 = 0 ))
4948necon1ad 2959 . . . . 5 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → ( 10𝑥 = 𝑦))
508, 49mpd 15 . . . 4 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → 𝑥 = 𝑦)
5150expr 456 . . 3 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → ((𝑉𝑥) = (𝑉𝑦) → 𝑥 = 𝑦))
5251ralrimivva 3114 . 2 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑥) = (𝑉𝑦) → 𝑥 = 𝑦))
53 dff13 7109 . 2 (𝑉:𝐼1-1𝐵 ↔ (𝑉:𝐼𝐵 ∧ ∀𝑥𝐼𝑦𝐼 ((𝑉𝑥) = (𝑉𝑦) → 𝑥 = 𝑦)))
546, 52, 53sylanbrc 582 1 (𝜑𝑉:𝐼1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  ifcif 4456  cmpt 5153  ccnv 5579  cima 5583  wf 6414  1-1wf1 6415  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  0cc0 10802  1c1 10803  cn 11903  0cn0 12163  Basecbs 16840  0gc0g 17067  1rcur 19652  Ringcrg 19698   mPwSer cmps 21017   mVar cmvr 21018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-mgp 19636  df-ur 19653  df-ring 19700  df-psr 21022  df-mvr 21023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator