MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrf1 Structured version   Visualization version   GIF version

Theorem mvrf1 22024
Description: The power series variable function is injective if the base ring is nonzero. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
mvrf.s 𝑆 = (𝐼 mPwSer 𝑅)
mvrf.v 𝑉 = (𝐼 mVar 𝑅)
mvrf.b 𝐵 = (Base‘𝑆)
mvrf.i (𝜑𝐼𝑊)
mvrf.r (𝜑𝑅 ∈ Ring)
mvrf1.z 0 = (0g𝑅)
mvrf1.o 1 = (1r𝑅)
mvrf1.n (𝜑10 )
Assertion
Ref Expression
mvrf1 (𝜑𝑉:𝐼1-1𝐵)

Proof of Theorem mvrf1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrf.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 mvrf.v . . 3 𝑉 = (𝐼 mVar 𝑅)
3 mvrf.b . . 3 𝐵 = (Base‘𝑆)
4 mvrf.i . . 3 (𝜑𝐼𝑊)
5 mvrf.r . . 3 (𝜑𝑅 ∈ Ring)
61, 2, 3, 4, 5mvrf 22023 . 2 (𝜑𝑉:𝐼𝐵)
7 mvrf1.n . . . . . 6 (𝜑10 )
87adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → 10 )
9 simp2r 1199 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → (𝑉𝑥) = (𝑉𝑦))
109fveq1d 6909 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑉𝑥)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) = ((𝑉𝑦)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))))
11 eqid 2735 . . . . . . . . . 10 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
12 mvrf1.z . . . . . . . . . 10 0 = (0g𝑅)
13 mvrf1.o . . . . . . . . . 10 1 = (1r𝑅)
1443ad2ant1 1132 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝐼𝑊)
1553ad2ant1 1132 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝑅 ∈ Ring)
16 simp2ll 1239 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝑥𝐼)
172, 11, 12, 13, 14, 15, 16mvrid 22022 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑉𝑥)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) = 1 )
18 simp2lr 1240 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝑦𝐼)
19 1nn0 12540 . . . . . . . . . . 11 1 ∈ ℕ0
2011snifpsrbag 21958 . . . . . . . . . . 11 ((𝐼𝑊 ∧ 1 ∈ ℕ0) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2114, 19, 20sylancl 586 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
222, 11, 12, 13, 14, 15, 18, 21mvrval2 22021 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑉𝑦)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) = if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ))
2310, 17, 223eqtr3d 2783 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 1 = if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ))
24 simp3 1137 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ¬ 𝑥 = 𝑦)
25 mpteqb 7035 . . . . . . . . . . . . . 14 (∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) ∈ ℕ0 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) ↔ ∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0)))
26 0nn0 12539 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
2719, 26ifcli 4578 . . . . . . . . . . . . . . 15 if(𝑧 = 𝑥, 1, 0) ∈ ℕ0
2827a1i 11 . . . . . . . . . . . . . 14 (𝑧𝐼 → if(𝑧 = 𝑥, 1, 0) ∈ ℕ0)
2925, 28mprg 3065 . . . . . . . . . . . . 13 ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) ↔ ∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0))
30 iftrue 4537 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → if(𝑧 = 𝑥, 1, 0) = 1)
31 eqeq1 2739 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑧 = 𝑦𝑥 = 𝑦))
3231ifbid 4554 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → if(𝑧 = 𝑦, 1, 0) = if(𝑥 = 𝑦, 1, 0))
3330, 32eqeq12d 2751 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0) ↔ 1 = if(𝑥 = 𝑦, 1, 0)))
3433rspcv 3618 . . . . . . . . . . . . 13 (𝑥𝐼 → (∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0) → 1 = if(𝑥 = 𝑦, 1, 0)))
3529, 34biimtrid 242 . . . . . . . . . . . 12 (𝑥𝐼 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → 1 = if(𝑥 = 𝑦, 1, 0)))
3616, 35syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → 1 = if(𝑥 = 𝑦, 1, 0)))
37 ax-1ne0 11222 . . . . . . . . . . . . 13 1 ≠ 0
38 eqeq1 2739 . . . . . . . . . . . . . 14 (1 = if(𝑥 = 𝑦, 1, 0) → (1 = 0 ↔ if(𝑥 = 𝑦, 1, 0) = 0))
3938necon3abid 2975 . . . . . . . . . . . . 13 (1 = if(𝑥 = 𝑦, 1, 0) → (1 ≠ 0 ↔ ¬ if(𝑥 = 𝑦, 1, 0) = 0))
4037, 39mpbii 233 . . . . . . . . . . . 12 (1 = if(𝑥 = 𝑦, 1, 0) → ¬ if(𝑥 = 𝑦, 1, 0) = 0)
41 iffalse 4540 . . . . . . . . . . . 12 𝑥 = 𝑦 → if(𝑥 = 𝑦, 1, 0) = 0)
4240, 41nsyl2 141 . . . . . . . . . . 11 (1 = if(𝑥 = 𝑦, 1, 0) → 𝑥 = 𝑦)
4336, 42syl6 35 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → 𝑥 = 𝑦))
4424, 43mtod 198 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ¬ (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)))
45 iffalse 4540 . . . . . . . . 9 (¬ (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ) = 0 )
4644, 45syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ) = 0 )
4723, 46eqtrd 2775 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 1 = 0 )
48473expia 1120 . . . . . 6 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → (¬ 𝑥 = 𝑦1 = 0 ))
4948necon1ad 2955 . . . . 5 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → ( 10𝑥 = 𝑦))
508, 49mpd 15 . . . 4 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → 𝑥 = 𝑦)
5150expr 456 . . 3 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → ((𝑉𝑥) = (𝑉𝑦) → 𝑥 = 𝑦))
5251ralrimivva 3200 . 2 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑥) = (𝑉𝑦) → 𝑥 = 𝑦))
53 dff13 7275 . 2 (𝑉:𝐼1-1𝐵 ↔ (𝑉:𝐼𝐵 ∧ ∀𝑥𝐼𝑦𝐼 ((𝑉𝑥) = (𝑉𝑦) → 𝑥 = 𝑦)))
546, 52, 53sylanbrc 583 1 (𝜑𝑉:𝐼1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  ifcif 4531  cmpt 5231  ccnv 5688  cima 5692  wf 6559  1-1wf1 6560  cfv 6563  (class class class)co 7431  m cmap 8865  Fincfn 8984  0cc0 11153  1c1 11154  cn 12264  0cn0 12524  Basecbs 17245  0gc0g 17486  1rcur 20199  Ringcrg 20251   mPwSer cmps 21942   mVar cmvr 21943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-tset 17317  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-mgp 20153  df-ur 20200  df-ring 20253  df-psr 21947  df-mvr 21948
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator