MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrf1 Structured version   Visualization version   GIF version

Theorem mvrf1 21194
Description: The power series variable function is injective if the base ring is nonzero. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
mvrf.s 𝑆 = (𝐼 mPwSer 𝑅)
mvrf.v 𝑉 = (𝐼 mVar 𝑅)
mvrf.b 𝐵 = (Base‘𝑆)
mvrf.i (𝜑𝐼𝑊)
mvrf.r (𝜑𝑅 ∈ Ring)
mvrf1.z 0 = (0g𝑅)
mvrf1.o 1 = (1r𝑅)
mvrf1.n (𝜑10 )
Assertion
Ref Expression
mvrf1 (𝜑𝑉:𝐼1-1𝐵)

Proof of Theorem mvrf1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrf.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 mvrf.v . . 3 𝑉 = (𝐼 mVar 𝑅)
3 mvrf.b . . 3 𝐵 = (Base‘𝑆)
4 mvrf.i . . 3 (𝜑𝐼𝑊)
5 mvrf.r . . 3 (𝜑𝑅 ∈ Ring)
61, 2, 3, 4, 5mvrf 21193 . 2 (𝜑𝑉:𝐼𝐵)
7 mvrf1.n . . . . . 6 (𝜑10 )
87adantr 481 . . . . 5 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → 10 )
9 simp2r 1199 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → (𝑉𝑥) = (𝑉𝑦))
109fveq1d 6776 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑉𝑥)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) = ((𝑉𝑦)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))))
11 eqid 2738 . . . . . . . . . 10 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
12 mvrf1.z . . . . . . . . . 10 0 = (0g𝑅)
13 mvrf1.o . . . . . . . . . 10 1 = (1r𝑅)
1443ad2ant1 1132 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝐼𝑊)
1553ad2ant1 1132 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝑅 ∈ Ring)
16 simp2ll 1239 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝑥𝐼)
172, 11, 12, 13, 14, 15, 16mvrid 21192 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑉𝑥)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) = 1 )
18 simp2lr 1240 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝑦𝐼)
19 1nn0 12249 . . . . . . . . . . 11 1 ∈ ℕ0
2011snifpsrbag 21125 . . . . . . . . . . 11 ((𝐼𝑊 ∧ 1 ∈ ℕ0) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2114, 19, 20sylancl 586 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
222, 11, 12, 13, 14, 15, 18, 21mvrval2 21191 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑉𝑦)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) = if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ))
2310, 17, 223eqtr3d 2786 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 1 = if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ))
24 simp3 1137 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ¬ 𝑥 = 𝑦)
25 mpteqb 6894 . . . . . . . . . . . . . 14 (∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) ∈ ℕ0 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) ↔ ∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0)))
26 0nn0 12248 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
2719, 26ifcli 4506 . . . . . . . . . . . . . . 15 if(𝑧 = 𝑥, 1, 0) ∈ ℕ0
2827a1i 11 . . . . . . . . . . . . . 14 (𝑧𝐼 → if(𝑧 = 𝑥, 1, 0) ∈ ℕ0)
2925, 28mprg 3078 . . . . . . . . . . . . 13 ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) ↔ ∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0))
30 iftrue 4465 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → if(𝑧 = 𝑥, 1, 0) = 1)
31 eqeq1 2742 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑧 = 𝑦𝑥 = 𝑦))
3231ifbid 4482 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → if(𝑧 = 𝑦, 1, 0) = if(𝑥 = 𝑦, 1, 0))
3330, 32eqeq12d 2754 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0) ↔ 1 = if(𝑥 = 𝑦, 1, 0)))
3433rspcv 3557 . . . . . . . . . . . . 13 (𝑥𝐼 → (∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0) → 1 = if(𝑥 = 𝑦, 1, 0)))
3529, 34syl5bi 241 . . . . . . . . . . . 12 (𝑥𝐼 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → 1 = if(𝑥 = 𝑦, 1, 0)))
3616, 35syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → 1 = if(𝑥 = 𝑦, 1, 0)))
37 ax-1ne0 10940 . . . . . . . . . . . . 13 1 ≠ 0
38 eqeq1 2742 . . . . . . . . . . . . . 14 (1 = if(𝑥 = 𝑦, 1, 0) → (1 = 0 ↔ if(𝑥 = 𝑦, 1, 0) = 0))
3938necon3abid 2980 . . . . . . . . . . . . 13 (1 = if(𝑥 = 𝑦, 1, 0) → (1 ≠ 0 ↔ ¬ if(𝑥 = 𝑦, 1, 0) = 0))
4037, 39mpbii 232 . . . . . . . . . . . 12 (1 = if(𝑥 = 𝑦, 1, 0) → ¬ if(𝑥 = 𝑦, 1, 0) = 0)
41 iffalse 4468 . . . . . . . . . . . 12 𝑥 = 𝑦 → if(𝑥 = 𝑦, 1, 0) = 0)
4240, 41nsyl2 141 . . . . . . . . . . 11 (1 = if(𝑥 = 𝑦, 1, 0) → 𝑥 = 𝑦)
4336, 42syl6 35 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → 𝑥 = 𝑦))
4424, 43mtod 197 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ¬ (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)))
45 iffalse 4468 . . . . . . . . 9 (¬ (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ) = 0 )
4644, 45syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ) = 0 )
4723, 46eqtrd 2778 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 1 = 0 )
48473expia 1120 . . . . . 6 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → (¬ 𝑥 = 𝑦1 = 0 ))
4948necon1ad 2960 . . . . 5 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → ( 10𝑥 = 𝑦))
508, 49mpd 15 . . . 4 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → 𝑥 = 𝑦)
5150expr 457 . . 3 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → ((𝑉𝑥) = (𝑉𝑦) → 𝑥 = 𝑦))
5251ralrimivva 3123 . 2 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑥) = (𝑉𝑦) → 𝑥 = 𝑦))
53 dff13 7128 . 2 (𝑉:𝐼1-1𝐵 ↔ (𝑉:𝐼𝐵 ∧ ∀𝑥𝐼𝑦𝐼 ((𝑉𝑥) = (𝑉𝑦) → 𝑥 = 𝑦)))
546, 52, 53sylanbrc 583 1 (𝜑𝑉:𝐼1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  ifcif 4459  cmpt 5157  ccnv 5588  cima 5592  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  0cc0 10871  1c1 10872  cn 11973  0cn0 12233  Basecbs 16912  0gc0g 17150  1rcur 19737  Ringcrg 19783   mPwSer cmps 21107   mVar cmvr 21108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-tset 16981  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-mgp 19721  df-ur 19738  df-ring 19785  df-psr 21112  df-mvr 21113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator