MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrf1 Structured version   Visualization version   GIF version

Theorem mvrf1 20663
Description: The power series variable function is injective if the base ring is nonzero. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
mvrf.s 𝑆 = (𝐼 mPwSer 𝑅)
mvrf.v 𝑉 = (𝐼 mVar 𝑅)
mvrf.b 𝐵 = (Base‘𝑆)
mvrf.i (𝜑𝐼𝑊)
mvrf.r (𝜑𝑅 ∈ Ring)
mvrf1.z 0 = (0g𝑅)
mvrf1.o 1 = (1r𝑅)
mvrf1.n (𝜑10 )
Assertion
Ref Expression
mvrf1 (𝜑𝑉:𝐼1-1𝐵)

Proof of Theorem mvrf1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrf.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 mvrf.v . . 3 𝑉 = (𝐼 mVar 𝑅)
3 mvrf.b . . 3 𝐵 = (Base‘𝑆)
4 mvrf.i . . 3 (𝜑𝐼𝑊)
5 mvrf.r . . 3 (𝜑𝑅 ∈ Ring)
61, 2, 3, 4, 5mvrf 20662 . 2 (𝜑𝑉:𝐼𝐵)
7 mvrf1.n . . . . . 6 (𝜑10 )
87adantr 484 . . . . 5 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → 10 )
9 simp2r 1197 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → (𝑉𝑥) = (𝑉𝑦))
109fveq1d 6647 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑉𝑥)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) = ((𝑉𝑦)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))))
11 eqid 2798 . . . . . . . . . 10 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
12 mvrf1.z . . . . . . . . . 10 0 = (0g𝑅)
13 mvrf1.o . . . . . . . . . 10 1 = (1r𝑅)
1443ad2ant1 1130 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝐼𝑊)
1553ad2ant1 1130 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝑅 ∈ Ring)
16 simp2ll 1237 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝑥𝐼)
172, 11, 12, 13, 14, 15, 16mvrid 20661 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑉𝑥)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) = 1 )
18 simp2lr 1238 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝑦𝐼)
19 1nn0 11901 . . . . . . . . . . 11 1 ∈ ℕ0
2011snifpsrbag 20604 . . . . . . . . . . 11 ((𝐼𝑊 ∧ 1 ∈ ℕ0) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2114, 19, 20sylancl 589 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
222, 11, 12, 13, 14, 15, 18, 21mvrval2 20660 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑉𝑦)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) = if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ))
2310, 17, 223eqtr3d 2841 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 1 = if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ))
24 simp3 1135 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ¬ 𝑥 = 𝑦)
25 mpteqb 6764 . . . . . . . . . . . . . 14 (∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) ∈ ℕ0 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) ↔ ∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0)))
26 0nn0 11900 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
2719, 26ifcli 4471 . . . . . . . . . . . . . . 15 if(𝑧 = 𝑥, 1, 0) ∈ ℕ0
2827a1i 11 . . . . . . . . . . . . . 14 (𝑧𝐼 → if(𝑧 = 𝑥, 1, 0) ∈ ℕ0)
2925, 28mprg 3120 . . . . . . . . . . . . 13 ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) ↔ ∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0))
30 iftrue 4431 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → if(𝑧 = 𝑥, 1, 0) = 1)
31 eqeq1 2802 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑧 = 𝑦𝑥 = 𝑦))
3231ifbid 4447 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → if(𝑧 = 𝑦, 1, 0) = if(𝑥 = 𝑦, 1, 0))
3330, 32eqeq12d 2814 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0) ↔ 1 = if(𝑥 = 𝑦, 1, 0)))
3433rspcv 3566 . . . . . . . . . . . . 13 (𝑥𝐼 → (∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0) → 1 = if(𝑥 = 𝑦, 1, 0)))
3529, 34syl5bi 245 . . . . . . . . . . . 12 (𝑥𝐼 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → 1 = if(𝑥 = 𝑦, 1, 0)))
3616, 35syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → 1 = if(𝑥 = 𝑦, 1, 0)))
37 ax-1ne0 10595 . . . . . . . . . . . . 13 1 ≠ 0
38 eqeq1 2802 . . . . . . . . . . . . . 14 (1 = if(𝑥 = 𝑦, 1, 0) → (1 = 0 ↔ if(𝑥 = 𝑦, 1, 0) = 0))
3938necon3abid 3023 . . . . . . . . . . . . 13 (1 = if(𝑥 = 𝑦, 1, 0) → (1 ≠ 0 ↔ ¬ if(𝑥 = 𝑦, 1, 0) = 0))
4037, 39mpbii 236 . . . . . . . . . . . 12 (1 = if(𝑥 = 𝑦, 1, 0) → ¬ if(𝑥 = 𝑦, 1, 0) = 0)
41 iffalse 4434 . . . . . . . . . . . 12 𝑥 = 𝑦 → if(𝑥 = 𝑦, 1, 0) = 0)
4240, 41nsyl2 143 . . . . . . . . . . 11 (1 = if(𝑥 = 𝑦, 1, 0) → 𝑥 = 𝑦)
4336, 42syl6 35 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → 𝑥 = 𝑦))
4424, 43mtod 201 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ¬ (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)))
45 iffalse 4434 . . . . . . . . 9 (¬ (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ) = 0 )
4644, 45syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ) = 0 )
4723, 46eqtrd 2833 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 1 = 0 )
48473expia 1118 . . . . . 6 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → (¬ 𝑥 = 𝑦1 = 0 ))
4948necon1ad 3004 . . . . 5 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → ( 10𝑥 = 𝑦))
508, 49mpd 15 . . . 4 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → 𝑥 = 𝑦)
5150expr 460 . . 3 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → ((𝑉𝑥) = (𝑉𝑦) → 𝑥 = 𝑦))
5251ralrimivva 3156 . 2 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑥) = (𝑉𝑦) → 𝑥 = 𝑦))
53 dff13 6991 . 2 (𝑉:𝐼1-1𝐵 ↔ (𝑉:𝐼𝐵 ∧ ∀𝑥𝐼𝑦𝐼 ((𝑉𝑥) = (𝑉𝑦) → 𝑥 = 𝑦)))
546, 52, 53sylanbrc 586 1 (𝜑𝑉:𝐼1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  {crab 3110  ifcif 4425  cmpt 5110  ccnv 5518  cima 5522  wf 6320  1-1wf1 6321  cfv 6324  (class class class)co 7135  m cmap 8389  Fincfn 8492  0cc0 10526  1c1 10527  cn 11625  0cn0 11885  Basecbs 16475  0gc0g 16705  1rcur 19244  Ringcrg 19290   mPwSer cmps 20589   mVar cmvr 20590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-mgp 19233  df-ur 19245  df-ring 19292  df-psr 20594  df-mvr 20595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator