MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrf1 Structured version   Visualization version   GIF version

Theorem mvrf1 19699
Description: The power series variable function is injective if the base ring is nonzero. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
mvrf.s 𝑆 = (𝐼 mPwSer 𝑅)
mvrf.v 𝑉 = (𝐼 mVar 𝑅)
mvrf.b 𝐵 = (Base‘𝑆)
mvrf.i (𝜑𝐼𝑊)
mvrf.r (𝜑𝑅 ∈ Ring)
mvrf1.z 0 = (0g𝑅)
mvrf1.o 1 = (1r𝑅)
mvrf1.n (𝜑10 )
Assertion
Ref Expression
mvrf1 (𝜑𝑉:𝐼1-1𝐵)

Proof of Theorem mvrf1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrf.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 mvrf.v . . 3 𝑉 = (𝐼 mVar 𝑅)
3 mvrf.b . . 3 𝐵 = (Base‘𝑆)
4 mvrf.i . . 3 (𝜑𝐼𝑊)
5 mvrf.r . . 3 (𝜑𝑅 ∈ Ring)
61, 2, 3, 4, 5mvrf 19698 . 2 (𝜑𝑉:𝐼𝐵)
7 mvrf1.n . . . . . 6 (𝜑10 )
87adantr 472 . . . . 5 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → 10 )
9 simp2r 1257 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → (𝑉𝑥) = (𝑉𝑦))
109fveq1d 6377 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑉𝑥)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) = ((𝑉𝑦)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))))
11 eqid 2765 . . . . . . . . . 10 { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
12 mvrf1.z . . . . . . . . . 10 0 = (0g𝑅)
13 mvrf1.o . . . . . . . . . 10 1 = (1r𝑅)
1443ad2ant1 1163 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝐼𝑊)
1553ad2ant1 1163 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝑅 ∈ Ring)
16 simp2ll 1321 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝑥𝐼)
172, 11, 12, 13, 14, 15, 16mvrid 19697 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑉𝑥)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) = 1 )
18 simp2lr 1322 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 𝑦𝐼)
19 1nn0 11556 . . . . . . . . . . 11 1 ∈ ℕ0
2011snifpsrbag 19640 . . . . . . . . . . 11 ((𝐼𝑊 ∧ 1 ∈ ℕ0) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin})
2114, 19, 20sylancl 580 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin})
222, 11, 12, 13, 14, 15, 18, 21mvrval2 19696 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑉𝑦)‘(𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0))) = if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ))
2310, 17, 223eqtr3d 2807 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 1 = if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ))
24 simp3 1168 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ¬ 𝑥 = 𝑦)
25 mpteqb 6488 . . . . . . . . . . . . . 14 (∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) ∈ ℕ0 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) ↔ ∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0)))
26 0nn0 11555 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
2719, 26ifcli 4289 . . . . . . . . . . . . . . 15 if(𝑧 = 𝑥, 1, 0) ∈ ℕ0
2827a1i 11 . . . . . . . . . . . . . 14 (𝑧𝐼 → if(𝑧 = 𝑥, 1, 0) ∈ ℕ0)
2925, 28mprg 3073 . . . . . . . . . . . . 13 ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) ↔ ∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0))
30 iftrue 4249 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → if(𝑧 = 𝑥, 1, 0) = 1)
31 eqeq1 2769 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑧 = 𝑦𝑥 = 𝑦))
3231ifbid 4265 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → if(𝑧 = 𝑦, 1, 0) = if(𝑥 = 𝑦, 1, 0))
3330, 32eqeq12d 2780 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0) ↔ 1 = if(𝑥 = 𝑦, 1, 0)))
3433rspcv 3457 . . . . . . . . . . . . 13 (𝑥𝐼 → (∀𝑧𝐼 if(𝑧 = 𝑥, 1, 0) = if(𝑧 = 𝑦, 1, 0) → 1 = if(𝑥 = 𝑦, 1, 0)))
3529, 34syl5bi 233 . . . . . . . . . . . 12 (𝑥𝐼 → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → 1 = if(𝑥 = 𝑦, 1, 0)))
3616, 35syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → 1 = if(𝑥 = 𝑦, 1, 0)))
37 ax-1ne0 10258 . . . . . . . . . . . . 13 1 ≠ 0
38 eqeq1 2769 . . . . . . . . . . . . . 14 (1 = if(𝑥 = 𝑦, 1, 0) → (1 = 0 ↔ if(𝑥 = 𝑦, 1, 0) = 0))
3938necon3abid 2973 . . . . . . . . . . . . 13 (1 = if(𝑥 = 𝑦, 1, 0) → (1 ≠ 0 ↔ ¬ if(𝑥 = 𝑦, 1, 0) = 0))
4037, 39mpbii 224 . . . . . . . . . . . 12 (1 = if(𝑥 = 𝑦, 1, 0) → ¬ if(𝑥 = 𝑦, 1, 0) = 0)
41 iffalse 4252 . . . . . . . . . . . 12 𝑥 = 𝑦 → if(𝑥 = 𝑦, 1, 0) = 0)
4240, 41nsyl2 144 . . . . . . . . . . 11 (1 = if(𝑥 = 𝑦, 1, 0) → 𝑥 = 𝑦)
4336, 42syl6 35 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → 𝑥 = 𝑦))
4424, 43mtod 189 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → ¬ (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)))
45 iffalse 4252 . . . . . . . . 9 (¬ (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)) → if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ) = 0 )
4644, 45syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → if((𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)) = (𝑧𝐼 ↦ if(𝑧 = 𝑦, 1, 0)), 1 , 0 ) = 0 )
4723, 46eqtrd 2799 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦)) ∧ ¬ 𝑥 = 𝑦) → 1 = 0 )
48473expia 1150 . . . . . 6 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → (¬ 𝑥 = 𝑦1 = 0 ))
4948necon1ad 2954 . . . . 5 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → ( 10𝑥 = 𝑦))
508, 49mpd 15 . . . 4 ((𝜑 ∧ ((𝑥𝐼𝑦𝐼) ∧ (𝑉𝑥) = (𝑉𝑦))) → 𝑥 = 𝑦)
5150expr 448 . . 3 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → ((𝑉𝑥) = (𝑉𝑦) → 𝑥 = 𝑦))
5251ralrimivva 3118 . 2 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑥) = (𝑉𝑦) → 𝑥 = 𝑦))
53 dff13 6704 . 2 (𝑉:𝐼1-1𝐵 ↔ (𝑉:𝐼𝐵 ∧ ∀𝑥𝐼𝑦𝐼 ((𝑉𝑥) = (𝑉𝑦) → 𝑥 = 𝑦)))
546, 52, 53sylanbrc 578 1 (𝜑𝑉:𝐼1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  {crab 3059  ifcif 4243  cmpt 4888  ccnv 5276  cima 5280  wf 6064  1-1wf1 6065  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  Fincfn 8160  0cc0 10189  1c1 10190  cn 11274  0cn0 11538  Basecbs 16130  0gc0g 16366  1rcur 18768  Ringcrg 18814   mPwSer cmps 19625   mVar cmvr 19626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-plusg 16227  df-mulr 16228  df-sca 16230  df-vsca 16231  df-tset 16233  df-0g 16368  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-grp 17692  df-mgp 18757  df-ur 18769  df-ring 18816  df-psr 19630  df-mvr 19631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator