Proof of Theorem cdleme01N
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cdleme0.u | . . . . 5
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | 
| 2 |  | simp1l 1197 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) | 
| 3 | 2 | hllatd 39366 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ Lat) | 
| 4 |  | simp2ll 1240 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) | 
| 5 |  | simp2rl 1242 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) | 
| 6 |  | eqid 2736 | . . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 7 |  | cdleme0.j | . . . . . . . 8
⊢  ∨ =
(join‘𝐾) | 
| 8 |  | cdleme0.a | . . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) | 
| 9 | 6, 7, 8 | hlatjcl 39369 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 10 | 2, 4, 5, 9 | syl3anc 1372 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 11 |  | simp1r 1198 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑊 ∈ 𝐻) | 
| 12 |  | cdleme0.h | . . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) | 
| 13 | 6, 12 | lhpbase 40001 | . . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) | 
| 14 | 11, 13 | syl 17 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑊 ∈ (Base‘𝐾)) | 
| 15 |  | cdleme0.l | . . . . . . 7
⊢  ≤ =
(le‘𝐾) | 
| 16 |  | cdleme0.m | . . . . . . 7
⊢  ∧ =
(meet‘𝐾) | 
| 17 | 6, 15, 16 | latmle2 18511 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) | 
| 18 | 3, 10, 14, 17 | syl3anc 1372 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) | 
| 19 | 1, 18 | eqbrtrid 5177 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑈 ≤ 𝑊) | 
| 20 |  | simp2lr 1241 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ¬ 𝑃 ≤ 𝑊) | 
| 21 |  | nbrne2 5162 | . . . 4
⊢ ((𝑈 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊) → 𝑈 ≠ 𝑃) | 
| 22 | 19, 20, 21 | syl2anc 584 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑈 ≠ 𝑃) | 
| 23 |  | simp2rr 1243 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ¬ 𝑄 ≤ 𝑊) | 
| 24 |  | nbrne2 5162 | . . . 4
⊢ ((𝑈 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊) → 𝑈 ≠ 𝑄) | 
| 25 | 19, 23, 24 | syl2anc 584 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑈 ≠ 𝑄) | 
| 26 |  | simp1 1136 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 27 | 15, 7, 16, 8, 12, 1 | cdlemeulpq 40223 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑈 ≤ (𝑃 ∨ 𝑄)) | 
| 28 | 26, 4, 5, 27 | syl12anc 836 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑈 ≤ (𝑃 ∨ 𝑄)) | 
| 29 | 22, 25, 28 | 3jca 1128 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝑈 ≠ 𝑃 ∧ 𝑈 ≠ 𝑄 ∧ 𝑈 ≤ (𝑃 ∨ 𝑄))) | 
| 30 | 29, 19 | jca 511 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ((𝑈 ≠ 𝑃 ∧ 𝑈 ≠ 𝑄 ∧ 𝑈 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑈 ≤ 𝑊)) |