Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme01N Structured version   Visualization version   GIF version

Theorem cdleme01N 39080
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l ≀ = (leβ€˜πΎ)
cdleme0.j ∨ = (joinβ€˜πΎ)
cdleme0.m ∧ = (meetβ€˜πΎ)
cdleme0.a 𝐴 = (Atomsβ€˜πΎ)
cdleme0.h 𝐻 = (LHypβ€˜πΎ)
cdleme0.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
Assertion
Ref Expression
cdleme01N (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ ((π‘ˆ β‰  𝑃 ∧ π‘ˆ β‰  𝑄 ∧ π‘ˆ ≀ (𝑃 ∨ 𝑄)) ∧ π‘ˆ ≀ π‘Š))

Proof of Theorem cdleme01N
StepHypRef Expression
1 cdleme0.u . . . . 5 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
2 simp1l 1197 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ 𝐾 ∈ HL)
32hllatd 38222 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ 𝐾 ∈ Lat)
4 simp2ll 1240 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ 𝑃 ∈ 𝐴)
5 simp2rl 1242 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ 𝑄 ∈ 𝐴)
6 eqid 2732 . . . . . . . 8 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
7 cdleme0.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
8 cdleme0.a . . . . . . . 8 𝐴 = (Atomsβ€˜πΎ)
96, 7, 8hlatjcl 38225 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
102, 4, 5, 9syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
11 simp1r 1198 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ π‘Š ∈ 𝐻)
12 cdleme0.h . . . . . . . 8 𝐻 = (LHypβ€˜πΎ)
136, 12lhpbase 38857 . . . . . . 7 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
1411, 13syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ π‘Š ∈ (Baseβ€˜πΎ))
15 cdleme0.l . . . . . . 7 ≀ = (leβ€˜πΎ)
16 cdleme0.m . . . . . . 7 ∧ = (meetβ€˜πΎ)
176, 15, 16latmle2 18414 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š)
183, 10, 14, 17syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š)
191, 18eqbrtrid 5182 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ π‘ˆ ≀ π‘Š)
20 simp2lr 1241 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ Β¬ 𝑃 ≀ π‘Š)
21 nbrne2 5167 . . . 4 ((π‘ˆ ≀ π‘Š ∧ Β¬ 𝑃 ≀ π‘Š) β†’ π‘ˆ β‰  𝑃)
2219, 20, 21syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ π‘ˆ β‰  𝑃)
23 simp2rr 1243 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ Β¬ 𝑄 ≀ π‘Š)
24 nbrne2 5167 . . . 4 ((π‘ˆ ≀ π‘Š ∧ Β¬ 𝑄 ≀ π‘Š) β†’ π‘ˆ β‰  𝑄)
2519, 23, 24syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ π‘ˆ β‰  𝑄)
26 simp1 1136 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2715, 7, 16, 8, 12, 1cdlemeulpq 39079 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ π‘ˆ ≀ (𝑃 ∨ 𝑄))
2826, 4, 5, 27syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ π‘ˆ ≀ (𝑃 ∨ 𝑄))
2922, 25, 283jca 1128 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ (π‘ˆ β‰  𝑃 ∧ π‘ˆ β‰  𝑄 ∧ π‘ˆ ≀ (𝑃 ∨ 𝑄)))
3029, 19jca 512 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ ((π‘ˆ β‰  𝑃 ∧ π‘ˆ β‰  𝑄 ∧ π‘ˆ ≀ (𝑃 ∨ 𝑄)) ∧ π‘ˆ ≀ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  Latclat 18380  Atomscatm 38121  HLchlt 38208  LHypclh 38843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-lat 18381  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-lhyp 38847
This theorem is referenced by:  cdleme02N  39081
  Copyright terms: Public domain W3C validator