MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islp2 Structured version   Visualization version   GIF version

Theorem islp2 22548
Description: The predicate "𝑃 is a limit point of 𝑆 " in terms of neighborhoods. Definition of limit point in [Munkres] p. 97. Although Munkres uses open neighborhoods, it also works for our more general neighborhoods. (Contributed by NM, 26-Feb-2007.) (Proof shortened by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
islp2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘†) ↔ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝑃})(𝑛 ∩ (𝑆 βˆ– {𝑃})) β‰  βˆ…))
Distinct variable groups:   𝑛,𝐽   𝑃,𝑛   𝑆,𝑛   𝑛,𝑋

Proof of Theorem islp2
StepHypRef Expression
1 lpfval.1 . . . 4 𝑋 = βˆͺ 𝐽
21islp 22543 . . 3 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘†) ↔ 𝑃 ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {𝑃}))))
323adant3 1132 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘†) ↔ 𝑃 ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {𝑃}))))
4 ssdifss 4115 . . 3 (𝑆 βŠ† 𝑋 β†’ (𝑆 βˆ– {𝑃}) βŠ† 𝑋)
51neindisj2 22526 . . 3 ((𝐽 ∈ Top ∧ (𝑆 βˆ– {𝑃}) βŠ† 𝑋 ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {𝑃})) ↔ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝑃})(𝑛 ∩ (𝑆 βˆ– {𝑃})) β‰  βˆ…))
64, 5syl3an2 1164 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {𝑃})) ↔ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝑃})(𝑛 ∩ (𝑆 βˆ– {𝑃})) β‰  βˆ…))
73, 6bitrd 278 1 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘†) ↔ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝑃})(𝑛 ∩ (𝑆 βˆ– {𝑃})) β‰  βˆ…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2939  βˆ€wral 3060   βˆ– cdif 3925   ∩ cin 3927   βŠ† wss 3928  βˆ…c0 4302  {csn 4606  βˆͺ cuni 4885  β€˜cfv 6516  Topctop 22294  clsccl 22421  neicnei 22500  limPtclp 22537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5262  ax-sep 5276  ax-nul 5283  ax-pow 5340  ax-pr 5404  ax-un 7692
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3365  df-rab 3419  df-v 3461  df-sbc 3758  df-csb 3874  df-dif 3931  df-un 3933  df-in 3935  df-ss 3945  df-nul 4303  df-if 4507  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4886  df-int 4928  df-iun 4976  df-iin 4977  df-br 5126  df-opab 5188  df-mpt 5209  df-id 5551  df-xp 5659  df-rel 5660  df-cnv 5661  df-co 5662  df-dm 5663  df-rn 5664  df-res 5665  df-ima 5666  df-iota 6468  df-fun 6518  df-fn 6519  df-f 6520  df-f1 6521  df-fo 6522  df-f1o 6523  df-fv 6524  df-top 22295  df-cld 22422  df-ntr 22423  df-cls 22424  df-nei 22501  df-lp 22539
This theorem is referenced by:  clslp  22551  lpbl  23911  reperflem  24233  islptre  44013  islpcn  44033
  Copyright terms: Public domain W3C validator