MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islp2 Structured version   Visualization version   GIF version

Theorem islp2 22869
Description: The predicate "𝑃 is a limit point of 𝑆 " in terms of neighborhoods. Definition of limit point in [Munkres] p. 97. Although Munkres uses open neighborhoods, it also works for our more general neighborhoods. (Contributed by NM, 26-Feb-2007.) (Proof shortened by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
islp2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘†) ↔ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝑃})(𝑛 ∩ (𝑆 βˆ– {𝑃})) β‰  βˆ…))
Distinct variable groups:   𝑛,𝐽   𝑃,𝑛   𝑆,𝑛   𝑛,𝑋

Proof of Theorem islp2
StepHypRef Expression
1 lpfval.1 . . . 4 𝑋 = βˆͺ 𝐽
21islp 22864 . . 3 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘†) ↔ 𝑃 ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {𝑃}))))
323adant3 1130 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘†) ↔ 𝑃 ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {𝑃}))))
4 ssdifss 4134 . . 3 (𝑆 βŠ† 𝑋 β†’ (𝑆 βˆ– {𝑃}) βŠ† 𝑋)
51neindisj2 22847 . . 3 ((𝐽 ∈ Top ∧ (𝑆 βˆ– {𝑃}) βŠ† 𝑋 ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {𝑃})) ↔ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝑃})(𝑛 ∩ (𝑆 βˆ– {𝑃})) β‰  βˆ…))
64, 5syl3an2 1162 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {𝑃})) ↔ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝑃})(𝑛 ∩ (𝑆 βˆ– {𝑃})) β‰  βˆ…))
73, 6bitrd 278 1 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋 ∧ 𝑃 ∈ 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘†) ↔ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝑃})(𝑛 ∩ (𝑆 βˆ– {𝑃})) β‰  βˆ…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059   βˆ– cdif 3944   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  {csn 4627  βˆͺ cuni 4907  β€˜cfv 6542  Topctop 22615  clsccl 22742  neicnei 22821  limPtclp 22858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-top 22616  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-lp 22860
This theorem is referenced by:  clslp  22872  lpbl  24232  reperflem  24554  islptre  44633  islpcn  44653
  Copyright terms: Public domain W3C validator