Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindimp2lem4 Structured version   Visualization version   GIF version

Theorem lindslinindimp2lem4 44870
Description: Lemma 4 for lindslinindsimp2 44872. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
lindslinind.y 𝑌 = ((invg𝑅)‘(𝑓𝑥))
lindslinind.g 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
Assertion
Ref Expression
lindslinindimp2lem4 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))
Distinct variable groups:   𝐵,𝑓,𝑦   𝑓,𝑀,𝑦   𝑅,𝑓,𝑥   𝑆,𝑓,𝑥,𝑦   𝑦,𝑉   𝑓,𝑍,𝑦   0 ,𝑓,𝑥,𝑦   𝑦,𝐺
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑦)   𝐺(𝑥,𝑓)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑌(𝑥,𝑦,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindimp2lem4
StepHypRef Expression
1 simpr 488 . . . . . . . . . . . . 13 ((𝑆𝑉𝑀 ∈ LMod) → 𝑀 ∈ LMod)
21adantr 484 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑀 ∈ LMod)
3 simprl 770 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑆 ⊆ (Base‘𝑀))
4 elpwg 4500 . . . . . . . . . . . . . 14 (𝑆𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
54ad2antrr 725 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
63, 5mpbird 260 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑆 ∈ 𝒫 (Base‘𝑀))
7 simpr 488 . . . . . . . . . . . . 13 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → 𝑥𝑆)
87adantl 485 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑥𝑆)
92, 6, 83jca 1125 . . . . . . . . . . 11 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑆))
109adantl 485 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑆))
11 simpl 486 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ))
12 lindslinind.g . . . . . . . . . . 11 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
1312a1i 11 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})))
14 eqid 2798 . . . . . . . . . . 11 (Base‘𝑀) = (Base‘𝑀)
15 lindslinind.r . . . . . . . . . . 11 𝑅 = (Scalar‘𝑀)
16 lindslinind.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
17 eqid 2798 . . . . . . . . . . 11 ( ·𝑠𝑀) = ( ·𝑠𝑀)
18 eqid 2798 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
19 lindslinind.0 . . . . . . . . . . 11 0 = (0g𝑅)
2014, 15, 16, 17, 18, 19lincdifsn 44833 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)))
2110, 11, 13, 20syl3anc 1368 . . . . . . . . 9 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)))
2221eqeq1d 2800 . . . . . . . 8 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)) = 𝑍))
23 lmodgrp 19634 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
2423adantl 485 . . . . . . . . . 10 ((𝑆𝑉𝑀 ∈ LMod) → 𝑀 ∈ Grp)
2524ad2antrl 727 . . . . . . . . 9 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑀 ∈ Grp)
261ad2antrl 727 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑀 ∈ LMod)
27 elmapi 8411 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐵m 𝑆) → 𝑓:𝑆𝐵)
28 ffvelrn 6826 . . . . . . . . . . . . . . 15 ((𝑓:𝑆𝐵𝑥𝑆) → (𝑓𝑥) ∈ 𝐵)
2928expcom 417 . . . . . . . . . . . . . 14 (𝑥𝑆 → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
3029ad2antll 728 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
3127, 30syl5com 31 . . . . . . . . . . . 12 (𝑓 ∈ (𝐵m 𝑆) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
3231adantr 484 . . . . . . . . . . 11 ((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
3332imp 410 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑓𝑥) ∈ 𝐵)
34 ssel2 3910 . . . . . . . . . . 11 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝑀))
3534ad2antll 728 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑥 ∈ (Base‘𝑀))
3614, 15, 17, 16lmodvscl 19644 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ (𝑓𝑥) ∈ 𝐵𝑥 ∈ (Base‘𝑀)) → ((𝑓𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
3726, 33, 35, 36syl3anc 1368 . . . . . . . . 9 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
38 difexg 5195 . . . . . . . . . . . . 13 (𝑆𝑉 → (𝑆 ∖ {𝑥}) ∈ V)
3938ad2antrr 725 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ∈ V)
40 ssdifss 4063 . . . . . . . . . . . . 13 (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
4140ad2antrl 727 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
4239, 41jca 515 . . . . . . . . . . 11 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
4342adantl 485 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
44 simprl 770 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑆𝑉𝑀 ∈ LMod))
45 simpl 486 . . . . . . . . . . . . 13 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → 𝑆 ⊆ (Base‘𝑀))
4645ad2antll 728 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑆 ⊆ (Base‘𝑀))
477ad2antll 728 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑥𝑆)
48 simpl 486 . . . . . . . . . . . . 13 ((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) → 𝑓 ∈ (𝐵m 𝑆))
4948adantr 484 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑓 ∈ (𝐵m 𝑆))
50 lindslinind.z . . . . . . . . . . . . 13 𝑍 = (0g𝑀)
51 lindslinind.y . . . . . . . . . . . . 13 𝑌 = ((invg𝑅)‘(𝑓𝑥))
5215, 16, 19, 50, 51, 12lindslinindimp2lem2 44868 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})))
5344, 46, 47, 49, 52syl13anc 1369 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})))
54 simpr 488 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))
5554adantl 485 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))
5615, 16, 19, 50, 51, 12lindslinindimp2lem3 44869 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 )) → 𝐺 finSupp 0 )
5744, 55, 11, 56syl3anc 1368 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 finSupp 0 )
5853, 57jca 515 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 ))
5914, 15, 16, 19lincfsuppcl 44822 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) ∧ (𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 )) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀))
6026, 43, 58, 59syl3anc 1368 . . . . . . . . 9 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀))
61 eqid 2798 . . . . . . . . . 10 (invg𝑀) = (invg𝑀)
6214, 18, 50, 61grpinvid2 18147 . . . . . . . . 9 ((𝑀 ∈ Grp ∧ ((𝑓𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀) ∧ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) → (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)) = 𝑍))
6325, 37, 60, 62syl3anc 1368 . . . . . . . 8 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)) = 𝑍))
6422, 63bitr4d 285 . . . . . . 7 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
65 eqcom 2805 . . . . . . . 8 (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)))
6615fveq2i 6648 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
6716, 66eqtri 2821 . . . . . . . . . . . . 13 𝐵 = (Base‘(Scalar‘𝑀))
6867oveq1i 7145 . . . . . . . . . . . 12 (𝐵m (𝑆 ∖ {𝑥})) = ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥}))
6953, 68eleqtrdi 2900 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})))
7039, 41elpwd 4505 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀))
7170adantl 485 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀))
72 lincval 44818 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})) ∧ (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))))
7326, 69, 71, 72syl3anc 1368 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))))
7473eqeq1d 2800 . . . . . . . . 9 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥))))
7512fveq1i 6646 . . . . . . . . . . . . . . . 16 (𝐺𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦)
7675a1i 11 . . . . . . . . . . . . . . 15 ((((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦))
77 fvres 6664 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝑆 ∖ {𝑥}) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓𝑦))
7877adantl 485 . . . . . . . . . . . . . . 15 ((((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓𝑦))
7976, 78eqtrd 2833 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺𝑦) = (𝑓𝑦))
8079oveq1d 7150 . . . . . . . . . . . . 13 ((((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝐺𝑦)( ·𝑠𝑀)𝑦) = ((𝑓𝑦)( ·𝑠𝑀)𝑦))
8180mpteq2dva 5125 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦)) = (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦)))
8281oveq2d 7151 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))))
83 eqid 2798 . . . . . . . . . . . . 13 (invg𝑅) = (invg𝑅)
8414, 15, 17, 61, 16, 83, 26, 35, 33lmodvsneg 19671 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥))
8551eqcomi 2807 . . . . . . . . . . . . . 14 ((invg𝑅)‘(𝑓𝑥)) = 𝑌
8685a1i 11 . . . . . . . . . . . . 13 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((invg𝑅)‘(𝑓𝑥)) = 𝑌)
8786oveq1d 7150 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑌( ·𝑠𝑀)𝑥))
8884, 87eqtrd 2833 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝑌( ·𝑠𝑀)𝑥))
8982, 88eqeq12d 2814 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
9089biimpd 232 . . . . . . . . 9 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
9174, 90sylbid 243 . . . . . . . 8 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
9265, 91syl5bi 245 . . . . . . 7 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
9364, 92sylbid 243 . . . . . 6 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
9493ex 416 . . . . 5 ((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))))
9594com23 86 . . . 4 ((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))))
96953impia 1114 . . 3 ((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
9796com12 32 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
98973impia 1114 1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  cdif 3878  wss 3881  𝒫 cpw 4497  {csn 4525   class class class wbr 5030  cmpt 5110  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389   finSupp cfsupp 8817  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  Grpcgrp 18095  invgcminusg 18096  LModclmod 19627   linC clinc 44813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-linc 44815
This theorem is referenced by:  lindslinindsimp2lem5  44871
  Copyright terms: Public domain W3C validator