Proof of Theorem lindslinindimp2lem4
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → 𝑀 ∈ LMod) | 
| 2 | 1 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑀 ∈ LMod) | 
| 3 |  | simprl 771 | . . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑆 ⊆ (Base‘𝑀)) | 
| 4 |  | elpwg 4603 | . . . . . . . . . . . . . 14
⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))) | 
| 5 | 4 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))) | 
| 6 | 3, 5 | mpbird 257 | . . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑆 ∈ 𝒫 (Base‘𝑀)) | 
| 7 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | 
| 8 | 7 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑥 ∈ 𝑆) | 
| 9 | 2, 6, 8 | 3jca 1129 | . . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) | 
| 10 | 9 | adantl 481 | . . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) | 
| 11 |  | simpl 482 | . . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 )) | 
| 12 |  | lindslinind.g | . . . . . . . . . . 11
⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) | 
| 13 | 12 | a1i 11 | . . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))) | 
| 14 |  | eqid 2737 | . . . . . . . . . . 11
⊢
(Base‘𝑀) =
(Base‘𝑀) | 
| 15 |  | lindslinind.r | . . . . . . . . . . 11
⊢ 𝑅 = (Scalar‘𝑀) | 
| 16 |  | lindslinind.b | . . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) | 
| 17 |  | eqid 2737 | . . . . . . . . . . 11
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) | 
| 18 |  | eqid 2737 | . . . . . . . . . . 11
⊢
(+g‘𝑀) = (+g‘𝑀) | 
| 19 |  | lindslinind.0 | . . . . . . . . . . 11
⊢  0 =
(0g‘𝑅) | 
| 20 | 14, 15, 16, 17, 18, 19 | lincdifsn 48341 | . . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) | 
| 21 | 10, 11, 13, 20 | syl3anc 1373 | . . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) | 
| 22 | 21 | eqeq1d 2739 | . . . . . . . 8
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = 𝑍)) | 
| 23 |  | lmodgrp 20865 | . . . . . . . . . . 11
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | 
| 24 | 23 | adantl 481 | . . . . . . . . . 10
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → 𝑀 ∈ Grp) | 
| 25 | 24 | ad2antrl 728 | . . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑀 ∈ Grp) | 
| 26 | 1 | ad2antrl 728 | . . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑀 ∈ LMod) | 
| 27 |  | elmapi 8889 | . . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → 𝑓:𝑆⟶𝐵) | 
| 28 |  | ffvelcdm 7101 | . . . . . . . . . . . . . . 15
⊢ ((𝑓:𝑆⟶𝐵 ∧ 𝑥 ∈ 𝑆) → (𝑓‘𝑥) ∈ 𝐵) | 
| 29 | 28 | expcom 413 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑆 → (𝑓:𝑆⟶𝐵 → (𝑓‘𝑥) ∈ 𝐵)) | 
| 30 | 29 | ad2antll 729 | . . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓:𝑆⟶𝐵 → (𝑓‘𝑥) ∈ 𝐵)) | 
| 31 | 27, 30 | syl5com 31 | . . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓‘𝑥) ∈ 𝐵)) | 
| 32 | 31 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓‘𝑥) ∈ 𝐵)) | 
| 33 | 32 | imp 406 | . . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑓‘𝑥) ∈ 𝐵) | 
| 34 |  | ssel2 3978 | . . . . . . . . . . 11
⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝑀)) | 
| 35 | 34 | ad2antll 729 | . . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑥 ∈ (Base‘𝑀)) | 
| 36 | 14, 15, 17, 16 | lmodvscl 20876 | . . . . . . . . . 10
⊢ ((𝑀 ∈ LMod ∧ (𝑓‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ (Base‘𝑀)) → ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀)) | 
| 37 | 26, 33, 35, 36 | syl3anc 1373 | . . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀)) | 
| 38 |  | difexg 5329 | . . . . . . . . . . . . 13
⊢ (𝑆 ∈ 𝑉 → (𝑆 ∖ {𝑥}) ∈ V) | 
| 39 | 38 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∖ {𝑥}) ∈ V) | 
| 40 |  | ssdifss 4140 | . . . . . . . . . . . . 13
⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) | 
| 41 | 40 | ad2antrl 728 | . . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) | 
| 42 | 39, 41 | jca 511 | . . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))) | 
| 43 | 42 | adantl 481 | . . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))) | 
| 44 |  | simprl 771 | . . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) | 
| 45 |  | simpl 482 | . . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝑀)) | 
| 46 | 45 | ad2antll 729 | . . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑆 ⊆ (Base‘𝑀)) | 
| 47 | 7 | ad2antll 729 | . . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑥 ∈ 𝑆) | 
| 48 |  | simpl 482 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) → 𝑓 ∈ (𝐵 ↑m 𝑆)) | 
| 49 | 48 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑓 ∈ (𝐵 ↑m 𝑆)) | 
| 50 |  | lindslinind.z | . . . . . . . . . . . . 13
⊢ 𝑍 = (0g‘𝑀) | 
| 51 |  | lindslinind.y | . . . . . . . . . . . . 13
⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) | 
| 52 | 15, 16, 19, 50, 51, 12 | lindslinindimp2lem2 48376 | . . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) | 
| 53 | 44, 46, 47, 49, 52 | syl13anc 1374 | . . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) | 
| 54 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) | 
| 55 | 54 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) | 
| 56 | 15, 16, 19, 50, 51, 12 | lindslinindimp2lem3 48377 | . . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 )) → 𝐺 finSupp 0 ) | 
| 57 | 44, 55, 11, 56 | syl3anc 1373 | . . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 finSupp 0 ) | 
| 58 | 53, 57 | jca 511 | . . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 )) | 
| 59 | 14, 15, 16, 19 | lincfsuppcl 48330 | . . . . . . . . . 10
⊢ ((𝑀 ∈ LMod ∧ ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) ∧ (𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 )) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) | 
| 60 | 26, 43, 58, 59 | syl3anc 1373 | . . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) | 
| 61 |  | eqid 2737 | . . . . . . . . . 10
⊢
(invg‘𝑀) = (invg‘𝑀) | 
| 62 | 14, 18, 50, 61 | grpinvid2 19010 | . . . . . . . . 9
⊢ ((𝑀 ∈ Grp ∧ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀) ∧ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) → (((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = 𝑍)) | 
| 63 | 25, 37, 60, 62 | syl3anc 1373 | . . . . . . . 8
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = 𝑍)) | 
| 64 | 22, 63 | bitr4d 282 | . . . . . . 7
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})))) | 
| 65 |  | eqcom 2744 | . . . . . . . 8
⊢
(((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) | 
| 66 | 15 | fveq2i 6909 | . . . . . . . . . . . . . 14
⊢
(Base‘𝑅) =
(Base‘(Scalar‘𝑀)) | 
| 67 | 16, 66 | eqtri 2765 | . . . . . . . . . . . . 13
⊢ 𝐵 =
(Base‘(Scalar‘𝑀)) | 
| 68 | 67 | oveq1i 7441 | . . . . . . . . . . . 12
⊢ (𝐵 ↑m (𝑆 ∖ {𝑥})) = ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})) | 
| 69 | 53, 68 | eleqtrdi 2851 | . . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥}))) | 
| 70 | 39, 41 | elpwd 4606 | . . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) | 
| 71 | 70 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) | 
| 72 |  | lincval 48326 | . . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈
((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})) ∧ (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦)))) | 
| 73 | 26, 69, 71, 72 | syl3anc 1373 | . . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦)))) | 
| 74 | 73 | eqeq1d 2739 | . . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)))) | 
| 75 | 12 | fveq1i 6907 | . . . . . . . . . . . . . . . 16
⊢ (𝐺‘𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) | 
| 76 | 75 | a1i 11 | . . . . . . . . . . . . . . 15
⊢ ((((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺‘𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦)) | 
| 77 |  | fvres 6925 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (𝑆 ∖ {𝑥}) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓‘𝑦)) | 
| 78 | 77 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓‘𝑦)) | 
| 79 | 76, 78 | eqtrd 2777 | . . . . . . . . . . . . . 14
⊢ ((((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺‘𝑦) = (𝑓‘𝑦)) | 
| 80 | 79 | oveq1d 7446 | . . . . . . . . . . . . 13
⊢ ((((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦) = ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦)) | 
| 81 | 80 | mpteq2dva 5242 | . . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦)) = (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) | 
| 82 | 81 | oveq2d 7447 | . . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦)))) | 
| 83 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢
(invg‘𝑅) = (invg‘𝑅) | 
| 84 | 14, 15, 17, 61, 16, 83, 26, 35, 33 | lmodvsneg 20904 | . . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (((invg‘𝑅)‘(𝑓‘𝑥))( ·𝑠
‘𝑀)𝑥)) | 
| 85 | 51 | eqcomi 2746 | . . . . . . . . . . . . . 14
⊢
((invg‘𝑅)‘(𝑓‘𝑥)) = 𝑌 | 
| 86 | 85 | a1i 11 | . . . . . . . . . . . . 13
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((invg‘𝑅)‘(𝑓‘𝑥)) = 𝑌) | 
| 87 | 86 | oveq1d 7446 | . . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (((invg‘𝑅)‘(𝑓‘𝑥))( ·𝑠
‘𝑀)𝑥) = (𝑌( ·𝑠
‘𝑀)𝑥)) | 
| 88 | 84, 87 | eqtrd 2777 | . . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝑌( ·𝑠
‘𝑀)𝑥)) | 
| 89 | 82, 88 | eqeq12d 2753 | . . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) | 
| 90 | 89 | biimpd 229 | . . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) | 
| 91 | 74, 90 | sylbid 240 | . . . . . . . 8
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) | 
| 92 | 65, 91 | biimtrid 242 | . . . . . . 7
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) | 
| 93 | 64, 92 | sylbid 240 | . . . . . 6
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) | 
| 94 | 93 | ex 412 | . . . . 5
⊢ ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥)))) | 
| 95 | 94 | com23 86 | . . . 4
⊢ ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥)))) | 
| 96 | 95 | 3impia 1118 | . . 3
⊢ ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) | 
| 97 | 96 | com12 32 | . 2
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) | 
| 98 | 97 | 3impia 1118 | 1
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥)) |