Proof of Theorem lindslinindimp2lem4
Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → 𝑀 ∈ LMod) |
2 | 1 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑀 ∈ LMod) |
3 | | simprl 768 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑆 ⊆ (Base‘𝑀)) |
4 | | elpwg 4536 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))) |
5 | 4 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))) |
6 | 3, 5 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑆 ∈ 𝒫 (Base‘𝑀)) |
7 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
8 | 7 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑥 ∈ 𝑆) |
9 | 2, 6, 8 | 3jca 1127 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) |
10 | 9 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) |
11 | | simpl 483 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 )) |
12 | | lindslinind.g |
. . . . . . . . . . 11
⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) |
13 | 12 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))) |
14 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑀) =
(Base‘𝑀) |
15 | | lindslinind.r |
. . . . . . . . . . 11
⊢ 𝑅 = (Scalar‘𝑀) |
16 | | lindslinind.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
17 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
18 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(+g‘𝑀) = (+g‘𝑀) |
19 | | lindslinind.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑅) |
20 | 14, 15, 16, 17, 18, 19 | lincdifsn 45765 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
21 | 10, 11, 13, 20 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
22 | 21 | eqeq1d 2740 |
. . . . . . . 8
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = 𝑍)) |
23 | | lmodgrp 20130 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) |
24 | 23 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → 𝑀 ∈ Grp) |
25 | 24 | ad2antrl 725 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑀 ∈ Grp) |
26 | 1 | ad2antrl 725 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑀 ∈ LMod) |
27 | | elmapi 8637 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → 𝑓:𝑆⟶𝐵) |
28 | | ffvelrn 6959 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝑆⟶𝐵 ∧ 𝑥 ∈ 𝑆) → (𝑓‘𝑥) ∈ 𝐵) |
29 | 28 | expcom 414 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑆 → (𝑓:𝑆⟶𝐵 → (𝑓‘𝑥) ∈ 𝐵)) |
30 | 29 | ad2antll 726 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓:𝑆⟶𝐵 → (𝑓‘𝑥) ∈ 𝐵)) |
31 | 27, 30 | syl5com 31 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓‘𝑥) ∈ 𝐵)) |
32 | 31 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓‘𝑥) ∈ 𝐵)) |
33 | 32 | imp 407 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑓‘𝑥) ∈ 𝐵) |
34 | | ssel2 3916 |
. . . . . . . . . . 11
⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝑀)) |
35 | 34 | ad2antll 726 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑥 ∈ (Base‘𝑀)) |
36 | 14, 15, 17, 16 | lmodvscl 20140 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ LMod ∧ (𝑓‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ (Base‘𝑀)) → ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀)) |
37 | 26, 33, 35, 36 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀)) |
38 | | difexg 5251 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ 𝑉 → (𝑆 ∖ {𝑥}) ∈ V) |
39 | 38 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∖ {𝑥}) ∈ V) |
40 | | ssdifss 4070 |
. . . . . . . . . . . . 13
⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) |
41 | 40 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) |
42 | 39, 41 | jca 512 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))) |
43 | 42 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))) |
44 | | simprl 768 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) |
45 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝑀)) |
46 | 45 | ad2antll 726 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑆 ⊆ (Base‘𝑀)) |
47 | 7 | ad2antll 726 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑥 ∈ 𝑆) |
48 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) → 𝑓 ∈ (𝐵 ↑m 𝑆)) |
49 | 48 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑓 ∈ (𝐵 ↑m 𝑆)) |
50 | | lindslinind.z |
. . . . . . . . . . . . 13
⊢ 𝑍 = (0g‘𝑀) |
51 | | lindslinind.y |
. . . . . . . . . . . . 13
⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) |
52 | 15, 16, 19, 50, 51, 12 | lindslinindimp2lem2 45800 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) |
53 | 44, 46, 47, 49, 52 | syl13anc 1371 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) |
54 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) |
55 | 54 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) |
56 | 15, 16, 19, 50, 51, 12 | lindslinindimp2lem3 45801 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 )) → 𝐺 finSupp 0 ) |
57 | 44, 55, 11, 56 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 finSupp 0 ) |
58 | 53, 57 | jca 512 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 )) |
59 | 14, 15, 16, 19 | lincfsuppcl 45754 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ LMod ∧ ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) ∧ (𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 )) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) |
60 | 26, 43, 58, 59 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) |
61 | | eqid 2738 |
. . . . . . . . . 10
⊢
(invg‘𝑀) = (invg‘𝑀) |
62 | 14, 18, 50, 61 | grpinvid2 18631 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Grp ∧ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀) ∧ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) → (((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = 𝑍)) |
63 | 25, 37, 60, 62 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = 𝑍)) |
64 | 22, 63 | bitr4d 281 |
. . . . . . 7
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})))) |
65 | | eqcom 2745 |
. . . . . . . 8
⊢
(((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
66 | 15 | fveq2i 6777 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑅) =
(Base‘(Scalar‘𝑀)) |
67 | 16, 66 | eqtri 2766 |
. . . . . . . . . . . . 13
⊢ 𝐵 =
(Base‘(Scalar‘𝑀)) |
68 | 67 | oveq1i 7285 |
. . . . . . . . . . . 12
⊢ (𝐵 ↑m (𝑆 ∖ {𝑥})) = ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})) |
69 | 53, 68 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥}))) |
70 | 39, 41 | elpwd 4541 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) |
71 | 70 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) |
72 | | lincval 45750 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈
((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})) ∧ (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦)))) |
73 | 26, 69, 71, 72 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦)))) |
74 | 73 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
75 | 12 | fveq1i 6775 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺‘𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) |
76 | 75 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺‘𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦)) |
77 | | fvres 6793 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (𝑆 ∖ {𝑥}) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓‘𝑦)) |
78 | 77 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓‘𝑦)) |
79 | 76, 78 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺‘𝑦) = (𝑓‘𝑦)) |
80 | 79 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ ((((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦) = ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦)) |
81 | 80 | mpteq2dva 5174 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦)) = (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) |
82 | 81 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦)))) |
83 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(invg‘𝑅) = (invg‘𝑅) |
84 | 14, 15, 17, 61, 16, 83, 26, 35, 33 | lmodvsneg 20167 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (((invg‘𝑅)‘(𝑓‘𝑥))( ·𝑠
‘𝑀)𝑥)) |
85 | 51 | eqcomi 2747 |
. . . . . . . . . . . . . 14
⊢
((invg‘𝑅)‘(𝑓‘𝑥)) = 𝑌 |
86 | 85 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((invg‘𝑅)‘(𝑓‘𝑥)) = 𝑌) |
87 | 86 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (((invg‘𝑅)‘(𝑓‘𝑥))( ·𝑠
‘𝑀)𝑥) = (𝑌( ·𝑠
‘𝑀)𝑥)) |
88 | 84, 87 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝑌( ·𝑠
‘𝑀)𝑥)) |
89 | 82, 88 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
90 | 89 | biimpd 228 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
91 | 74, 90 | sylbid 239 |
. . . . . . . 8
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
92 | 65, 91 | syl5bi 241 |
. . . . . . 7
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
93 | 64, 92 | sylbid 239 |
. . . . . 6
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
94 | 93 | ex 413 |
. . . . 5
⊢ ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥)))) |
95 | 94 | com23 86 |
. . . 4
⊢ ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥)))) |
96 | 95 | 3impia 1116 |
. . 3
⊢ ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
97 | 96 | com12 32 |
. 2
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
98 | 97 | 3impia 1116 |
1
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥)) |