Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindimp2lem4 Structured version   Visualization version   GIF version

Theorem lindslinindimp2lem4 48190
Description: Lemma 4 for lindslinindsimp2 48192. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
lindslinind.y 𝑌 = ((invg𝑅)‘(𝑓𝑥))
lindslinind.g 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
Assertion
Ref Expression
lindslinindimp2lem4 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))
Distinct variable groups:   𝐵,𝑓,𝑦   𝑓,𝑀,𝑦   𝑅,𝑓,𝑥   𝑆,𝑓,𝑥,𝑦   𝑦,𝑉   𝑓,𝑍,𝑦   0 ,𝑓,𝑥,𝑦   𝑦,𝐺
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑦)   𝐺(𝑥,𝑓)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑌(𝑥,𝑦,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindimp2lem4
StepHypRef Expression
1 simpr 484 . . . . . . . . . . . . 13 ((𝑆𝑉𝑀 ∈ LMod) → 𝑀 ∈ LMod)
21adantr 480 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑀 ∈ LMod)
3 simprl 770 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑆 ⊆ (Base‘𝑀))
4 elpwg 4625 . . . . . . . . . . . . . 14 (𝑆𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
54ad2antrr 725 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
63, 5mpbird 257 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑆 ∈ 𝒫 (Base‘𝑀))
7 simpr 484 . . . . . . . . . . . . 13 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → 𝑥𝑆)
87adantl 481 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑥𝑆)
92, 6, 83jca 1128 . . . . . . . . . . 11 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑆))
109adantl 481 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑆))
11 simpl 482 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ))
12 lindslinind.g . . . . . . . . . . 11 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
1312a1i 11 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})))
14 eqid 2740 . . . . . . . . . . 11 (Base‘𝑀) = (Base‘𝑀)
15 lindslinind.r . . . . . . . . . . 11 𝑅 = (Scalar‘𝑀)
16 lindslinind.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
17 eqid 2740 . . . . . . . . . . 11 ( ·𝑠𝑀) = ( ·𝑠𝑀)
18 eqid 2740 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
19 lindslinind.0 . . . . . . . . . . 11 0 = (0g𝑅)
2014, 15, 16, 17, 18, 19lincdifsn 48153 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)))
2110, 11, 13, 20syl3anc 1371 . . . . . . . . 9 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)))
2221eqeq1d 2742 . . . . . . . 8 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)) = 𝑍))
23 lmodgrp 20887 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
2423adantl 481 . . . . . . . . . 10 ((𝑆𝑉𝑀 ∈ LMod) → 𝑀 ∈ Grp)
2524ad2antrl 727 . . . . . . . . 9 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑀 ∈ Grp)
261ad2antrl 727 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑀 ∈ LMod)
27 elmapi 8907 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐵m 𝑆) → 𝑓:𝑆𝐵)
28 ffvelcdm 7115 . . . . . . . . . . . . . . 15 ((𝑓:𝑆𝐵𝑥𝑆) → (𝑓𝑥) ∈ 𝐵)
2928expcom 413 . . . . . . . . . . . . . 14 (𝑥𝑆 → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
3029ad2antll 728 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
3127, 30syl5com 31 . . . . . . . . . . . 12 (𝑓 ∈ (𝐵m 𝑆) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
3231adantr 480 . . . . . . . . . . 11 ((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
3332imp 406 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑓𝑥) ∈ 𝐵)
34 ssel2 4003 . . . . . . . . . . 11 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝑀))
3534ad2antll 728 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑥 ∈ (Base‘𝑀))
3614, 15, 17, 16lmodvscl 20898 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ (𝑓𝑥) ∈ 𝐵𝑥 ∈ (Base‘𝑀)) → ((𝑓𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
3726, 33, 35, 36syl3anc 1371 . . . . . . . . 9 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
38 difexg 5347 . . . . . . . . . . . . 13 (𝑆𝑉 → (𝑆 ∖ {𝑥}) ∈ V)
3938ad2antrr 725 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ∈ V)
40 ssdifss 4163 . . . . . . . . . . . . 13 (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
4140ad2antrl 727 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
4239, 41jca 511 . . . . . . . . . . 11 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
4342adantl 481 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
44 simprl 770 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑆𝑉𝑀 ∈ LMod))
45 simpl 482 . . . . . . . . . . . . 13 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → 𝑆 ⊆ (Base‘𝑀))
4645ad2antll 728 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑆 ⊆ (Base‘𝑀))
477ad2antll 728 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑥𝑆)
48 simpl 482 . . . . . . . . . . . . 13 ((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) → 𝑓 ∈ (𝐵m 𝑆))
4948adantr 480 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑓 ∈ (𝐵m 𝑆))
50 lindslinind.z . . . . . . . . . . . . 13 𝑍 = (0g𝑀)
51 lindslinind.y . . . . . . . . . . . . 13 𝑌 = ((invg𝑅)‘(𝑓𝑥))
5215, 16, 19, 50, 51, 12lindslinindimp2lem2 48188 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})))
5344, 46, 47, 49, 52syl13anc 1372 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})))
54 simpr 484 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))
5554adantl 481 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))
5615, 16, 19, 50, 51, 12lindslinindimp2lem3 48189 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 )) → 𝐺 finSupp 0 )
5744, 55, 11, 56syl3anc 1371 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 finSupp 0 )
5853, 57jca 511 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 ))
5914, 15, 16, 19lincfsuppcl 48142 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) ∧ (𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 )) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀))
6026, 43, 58, 59syl3anc 1371 . . . . . . . . 9 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀))
61 eqid 2740 . . . . . . . . . 10 (invg𝑀) = (invg𝑀)
6214, 18, 50, 61grpinvid2 19032 . . . . . . . . 9 ((𝑀 ∈ Grp ∧ ((𝑓𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀) ∧ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) → (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)) = 𝑍))
6325, 37, 60, 62syl3anc 1371 . . . . . . . 8 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)) = 𝑍))
6422, 63bitr4d 282 . . . . . . 7 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
65 eqcom 2747 . . . . . . . 8 (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)))
6615fveq2i 6923 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
6716, 66eqtri 2768 . . . . . . . . . . . . 13 𝐵 = (Base‘(Scalar‘𝑀))
6867oveq1i 7458 . . . . . . . . . . . 12 (𝐵m (𝑆 ∖ {𝑥})) = ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥}))
6953, 68eleqtrdi 2854 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})))
7039, 41elpwd 4628 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀))
7170adantl 481 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀))
72 lincval 48138 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})) ∧ (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))))
7326, 69, 71, 72syl3anc 1371 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))))
7473eqeq1d 2742 . . . . . . . . 9 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥))))
7512fveq1i 6921 . . . . . . . . . . . . . . . 16 (𝐺𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦)
7675a1i 11 . . . . . . . . . . . . . . 15 ((((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦))
77 fvres 6939 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝑆 ∖ {𝑥}) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓𝑦))
7877adantl 481 . . . . . . . . . . . . . . 15 ((((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓𝑦))
7976, 78eqtrd 2780 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺𝑦) = (𝑓𝑦))
8079oveq1d 7463 . . . . . . . . . . . . 13 ((((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝐺𝑦)( ·𝑠𝑀)𝑦) = ((𝑓𝑦)( ·𝑠𝑀)𝑦))
8180mpteq2dva 5266 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦)) = (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦)))
8281oveq2d 7464 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))))
83 eqid 2740 . . . . . . . . . . . . 13 (invg𝑅) = (invg𝑅)
8414, 15, 17, 61, 16, 83, 26, 35, 33lmodvsneg 20926 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥))
8551eqcomi 2749 . . . . . . . . . . . . . 14 ((invg𝑅)‘(𝑓𝑥)) = 𝑌
8685a1i 11 . . . . . . . . . . . . 13 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((invg𝑅)‘(𝑓𝑥)) = 𝑌)
8786oveq1d 7463 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑌( ·𝑠𝑀)𝑥))
8884, 87eqtrd 2780 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝑌( ·𝑠𝑀)𝑥))
8982, 88eqeq12d 2756 . . . . . . . . . 10 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
9089biimpd 229 . . . . . . . . 9 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
9174, 90sylbid 240 . . . . . . . 8 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
9265, 91biimtrid 242 . . . . . . 7 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
9364, 92sylbid 240 . . . . . 6 (((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
9493ex 412 . . . . 5 ((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))))
9594com23 86 . . . 4 ((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))))
96953impia 1117 . . 3 ((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
9796com12 32 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
98973impia 1117 1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  wss 3976  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  cmpt 5249  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884   finSupp cfsupp 9431  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  Grpcgrp 18973  invgcminusg 18974  LModclmod 20880   linC clinc 48133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-lmod 20882  df-linc 48135
This theorem is referenced by:  lindslinindsimp2lem5  48191
  Copyright terms: Public domain W3C validator