Proof of Theorem lindslinindimp2lem4
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → 𝑀 ∈ LMod) |
| 2 | 1 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑀 ∈ LMod) |
| 3 | | simprl 770 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑆 ⊆ (Base‘𝑀)) |
| 4 | | elpwg 4578 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))) |
| 5 | 4 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))) |
| 6 | 3, 5 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑆 ∈ 𝒫 (Base‘𝑀)) |
| 7 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 8 | 7 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑥 ∈ 𝑆) |
| 9 | 2, 6, 8 | 3jca 1128 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) |
| 10 | 9 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) |
| 11 | | simpl 482 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 )) |
| 12 | | lindslinind.g |
. . . . . . . . . . 11
⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) |
| 13 | 12 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))) |
| 14 | | eqid 2735 |
. . . . . . . . . . 11
⊢
(Base‘𝑀) =
(Base‘𝑀) |
| 15 | | lindslinind.r |
. . . . . . . . . . 11
⊢ 𝑅 = (Scalar‘𝑀) |
| 16 | | lindslinind.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
| 17 | | eqid 2735 |
. . . . . . . . . . 11
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
| 18 | | eqid 2735 |
. . . . . . . . . . 11
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 19 | | lindslinind.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑅) |
| 20 | 14, 15, 16, 17, 18, 19 | lincdifsn 48400 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
| 21 | 10, 11, 13, 20 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
| 22 | 21 | eqeq1d 2737 |
. . . . . . . 8
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = 𝑍)) |
| 23 | | lmodgrp 20824 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) |
| 24 | 23 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → 𝑀 ∈ Grp) |
| 25 | 24 | ad2antrl 728 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑀 ∈ Grp) |
| 26 | 1 | ad2antrl 728 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑀 ∈ LMod) |
| 27 | | elmapi 8863 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → 𝑓:𝑆⟶𝐵) |
| 28 | | ffvelcdm 7071 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝑆⟶𝐵 ∧ 𝑥 ∈ 𝑆) → (𝑓‘𝑥) ∈ 𝐵) |
| 29 | 28 | expcom 413 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑆 → (𝑓:𝑆⟶𝐵 → (𝑓‘𝑥) ∈ 𝐵)) |
| 30 | 29 | ad2antll 729 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓:𝑆⟶𝐵 → (𝑓‘𝑥) ∈ 𝐵)) |
| 31 | 27, 30 | syl5com 31 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝐵 ↑m 𝑆) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓‘𝑥) ∈ 𝐵)) |
| 32 | 31 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓‘𝑥) ∈ 𝐵)) |
| 33 | 32 | imp 406 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑓‘𝑥) ∈ 𝐵) |
| 34 | | ssel2 3953 |
. . . . . . . . . . 11
⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝑀)) |
| 35 | 34 | ad2antll 729 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑥 ∈ (Base‘𝑀)) |
| 36 | 14, 15, 17, 16 | lmodvscl 20835 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ LMod ∧ (𝑓‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ (Base‘𝑀)) → ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀)) |
| 37 | 26, 33, 35, 36 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀)) |
| 38 | | difexg 5299 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ 𝑉 → (𝑆 ∖ {𝑥}) ∈ V) |
| 39 | 38 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∖ {𝑥}) ∈ V) |
| 40 | | ssdifss 4115 |
. . . . . . . . . . . . 13
⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) |
| 41 | 40 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) |
| 42 | 39, 41 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))) |
| 43 | 42 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))) |
| 44 | | simprl 770 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) |
| 45 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝑀)) |
| 46 | 45 | ad2antll 729 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑆 ⊆ (Base‘𝑀)) |
| 47 | 7 | ad2antll 729 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑥 ∈ 𝑆) |
| 48 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) → 𝑓 ∈ (𝐵 ↑m 𝑆)) |
| 49 | 48 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑓 ∈ (𝐵 ↑m 𝑆)) |
| 50 | | lindslinind.z |
. . . . . . . . . . . . 13
⊢ 𝑍 = (0g‘𝑀) |
| 51 | | lindslinind.y |
. . . . . . . . . . . . 13
⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) |
| 52 | 15, 16, 19, 50, 51, 12 | lindslinindimp2lem2 48435 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) |
| 53 | 44, 46, 47, 49, 52 | syl13anc 1374 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) |
| 54 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) |
| 55 | 54 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) |
| 56 | 15, 16, 19, 50, 51, 12 | lindslinindimp2lem3 48436 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 )) → 𝐺 finSupp 0 ) |
| 57 | 44, 55, 11, 56 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 finSupp 0 ) |
| 58 | 53, 57 | jca 511 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 )) |
| 59 | 14, 15, 16, 19 | lincfsuppcl 48389 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ LMod ∧ ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) ∧ (𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 )) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) |
| 60 | 26, 43, 58, 59 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) |
| 61 | | eqid 2735 |
. . . . . . . . . 10
⊢
(invg‘𝑀) = (invg‘𝑀) |
| 62 | 14, 18, 50, 61 | grpinvid2 18975 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Grp ∧ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀) ∧ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) → (((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = 𝑍)) |
| 63 | 25, 37, 60, 62 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = 𝑍)) |
| 64 | 22, 63 | bitr4d 282 |
. . . . . . 7
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})))) |
| 65 | | eqcom 2742 |
. . . . . . . 8
⊢
(((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
| 66 | 15 | fveq2i 6879 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑅) =
(Base‘(Scalar‘𝑀)) |
| 67 | 16, 66 | eqtri 2758 |
. . . . . . . . . . . . 13
⊢ 𝐵 =
(Base‘(Scalar‘𝑀)) |
| 68 | 67 | oveq1i 7415 |
. . . . . . . . . . . 12
⊢ (𝐵 ↑m (𝑆 ∖ {𝑥})) = ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})) |
| 69 | 53, 68 | eleqtrdi 2844 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥}))) |
| 70 | 39, 41 | elpwd 4581 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) |
| 71 | 70 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) |
| 72 | | lincval 48385 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈
((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})) ∧ (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦)))) |
| 73 | 26, 69, 71, 72 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦)))) |
| 74 | 73 | eqeq1d 2737 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 75 | 12 | fveq1i 6877 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺‘𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) |
| 76 | 75 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺‘𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦)) |
| 77 | | fvres 6895 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (𝑆 ∖ {𝑥}) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓‘𝑦)) |
| 78 | 77 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓‘𝑦)) |
| 79 | 76, 78 | eqtrd 2770 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺‘𝑦) = (𝑓‘𝑦)) |
| 80 | 79 | oveq1d 7420 |
. . . . . . . . . . . . 13
⊢ ((((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦) = ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦)) |
| 81 | 80 | mpteq2dva 5214 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦)) = (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) |
| 82 | 81 | oveq2d 7421 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦)))) |
| 83 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
(invg‘𝑅) = (invg‘𝑅) |
| 84 | 14, 15, 17, 61, 16, 83, 26, 35, 33 | lmodvsneg 20863 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (((invg‘𝑅)‘(𝑓‘𝑥))( ·𝑠
‘𝑀)𝑥)) |
| 85 | 51 | eqcomi 2744 |
. . . . . . . . . . . . . 14
⊢
((invg‘𝑅)‘(𝑓‘𝑥)) = 𝑌 |
| 86 | 85 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((invg‘𝑅)‘(𝑓‘𝑥)) = 𝑌) |
| 87 | 86 | oveq1d 7420 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (((invg‘𝑅)‘(𝑓‘𝑥))( ·𝑠
‘𝑀)𝑥) = (𝑌( ·𝑠
‘𝑀)𝑥)) |
| 88 | 84, 87 | eqtrd 2770 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝑌( ·𝑠
‘𝑀)𝑥)) |
| 89 | 82, 88 | eqeq12d 2751 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
| 90 | 89 | biimpd 229 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
| 91 | 74, 90 | sylbid 240 |
. . . . . . . 8
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
| 92 | 65, 91 | biimtrid 242 |
. . . . . . 7
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
| 93 | 64, 92 | sylbid 240 |
. . . . . 6
⊢ (((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
| 94 | 93 | ex 412 |
. . . . 5
⊢ ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥)))) |
| 95 | 94 | com23 86 |
. . . 4
⊢ ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥)))) |
| 96 | 95 | 3impia 1117 |
. . 3
⊢ ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
| 97 | 96 | com12 32 |
. 2
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
| 98 | 97 | 3impia 1117 |
1
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥)) |