| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrpnf2 | Structured version Visualization version GIF version | ||
| Description: Removing plus infinity from a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| infxrpnf2 | ⊢ (𝐴 ⊆ ℝ* → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdifss 4120 | . . . . 5 ⊢ (𝐴 ⊆ ℝ* → (𝐴 ∖ {+∞}) ⊆ ℝ*) | |
| 2 | infxrpnf 45440 | . . . . 5 ⊢ ((𝐴 ∖ {+∞}) ⊆ ℝ* → inf(((𝐴 ∖ {+∞}) ∪ {+∞}), ℝ*, < ) = inf((𝐴 ∖ {+∞}), ℝ*, < )) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → inf(((𝐴 ∖ {+∞}) ∪ {+∞}), ℝ*, < ) = inf((𝐴 ∖ {+∞}), ℝ*, < )) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → inf(((𝐴 ∖ {+∞}) ∪ {+∞}), ℝ*, < ) = inf((𝐴 ∖ {+∞}), ℝ*, < )) |
| 5 | difsnid 4791 | . . . . 5 ⊢ (+∞ ∈ 𝐴 → ((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴) | |
| 6 | 5 | infeq1d 9495 | . . . 4 ⊢ (+∞ ∈ 𝐴 → inf(((𝐴 ∖ {+∞}) ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → inf(((𝐴 ∖ {+∞}) ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) |
| 8 | 4, 7 | eqtr3d 2773 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) |
| 9 | difsn 4779 | . . . 4 ⊢ (¬ +∞ ∈ 𝐴 → (𝐴 ∖ {+∞}) = 𝐴) | |
| 10 | 9 | infeq1d 9495 | . . 3 ⊢ (¬ +∞ ∈ 𝐴 → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ ¬ +∞ ∈ 𝐴) → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) |
| 12 | 8, 11 | pm2.61dan 812 | 1 ⊢ (𝐴 ⊆ ℝ* → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∪ cun 3929 ⊆ wss 3931 {csn 4606 infcinf 9458 +∞cpnf 11271 ℝ*cxr 11273 < clt 11274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 |
| This theorem is referenced by: supminfxr2 45463 |
| Copyright terms: Public domain | W3C validator |