Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrpnf2 | Structured version Visualization version GIF version |
Description: Removing plus infinity from a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
infxrpnf2 | ⊢ (𝐴 ⊆ ℝ* → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifss 4043 | . . . . 5 ⊢ (𝐴 ⊆ ℝ* → (𝐴 ∖ {+∞}) ⊆ ℝ*) | |
2 | infxrpnf 42485 | . . . . 5 ⊢ ((𝐴 ∖ {+∞}) ⊆ ℝ* → inf(((𝐴 ∖ {+∞}) ∪ {+∞}), ℝ*, < ) = inf((𝐴 ∖ {+∞}), ℝ*, < )) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → inf(((𝐴 ∖ {+∞}) ∪ {+∞}), ℝ*, < ) = inf((𝐴 ∖ {+∞}), ℝ*, < )) |
4 | 3 | adantr 484 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → inf(((𝐴 ∖ {+∞}) ∪ {+∞}), ℝ*, < ) = inf((𝐴 ∖ {+∞}), ℝ*, < )) |
5 | difsnid 4703 | . . . . 5 ⊢ (+∞ ∈ 𝐴 → ((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴) | |
6 | 5 | infeq1d 8987 | . . . 4 ⊢ (+∞ ∈ 𝐴 → inf(((𝐴 ∖ {+∞}) ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) |
7 | 6 | adantl 485 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → inf(((𝐴 ∖ {+∞}) ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) |
8 | 4, 7 | eqtr3d 2795 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) |
9 | difsn 4691 | . . . 4 ⊢ (¬ +∞ ∈ 𝐴 → (𝐴 ∖ {+∞}) = 𝐴) | |
10 | 9 | infeq1d 8987 | . . 3 ⊢ (¬ +∞ ∈ 𝐴 → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) |
11 | 10 | adantl 485 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ ¬ +∞ ∈ 𝐴) → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) |
12 | 8, 11 | pm2.61dan 812 | 1 ⊢ (𝐴 ⊆ ℝ* → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∖ cdif 3857 ∪ cun 3858 ⊆ wss 3860 {csn 4525 infcinf 8951 +∞cpnf 10723 ℝ*cxr 10725 < clt 10726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-sup 8952 df-inf 8953 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 |
This theorem is referenced by: supminfxr2 42509 |
Copyright terms: Public domain | W3C validator |