Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrpnf2 Structured version   Visualization version   GIF version

Theorem infxrpnf2 42503
 Description: Removing plus infinity from a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
infxrpnf2 (𝐴 ⊆ ℝ* → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))

Proof of Theorem infxrpnf2
StepHypRef Expression
1 ssdifss 4043 . . . . 5 (𝐴 ⊆ ℝ* → (𝐴 ∖ {+∞}) ⊆ ℝ*)
2 infxrpnf 42485 . . . . 5 ((𝐴 ∖ {+∞}) ⊆ ℝ* → inf(((𝐴 ∖ {+∞}) ∪ {+∞}), ℝ*, < ) = inf((𝐴 ∖ {+∞}), ℝ*, < ))
31, 2syl 17 . . . 4 (𝐴 ⊆ ℝ* → inf(((𝐴 ∖ {+∞}) ∪ {+∞}), ℝ*, < ) = inf((𝐴 ∖ {+∞}), ℝ*, < ))
43adantr 484 . . 3 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → inf(((𝐴 ∖ {+∞}) ∪ {+∞}), ℝ*, < ) = inf((𝐴 ∖ {+∞}), ℝ*, < ))
5 difsnid 4703 . . . . 5 (+∞ ∈ 𝐴 → ((𝐴 ∖ {+∞}) ∪ {+∞}) = 𝐴)
65infeq1d 8987 . . . 4 (+∞ ∈ 𝐴 → inf(((𝐴 ∖ {+∞}) ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))
76adantl 485 . . 3 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → inf(((𝐴 ∖ {+∞}) ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))
84, 7eqtr3d 2795 . 2 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))
9 difsn 4691 . . . 4 (¬ +∞ ∈ 𝐴 → (𝐴 ∖ {+∞}) = 𝐴)
109infeq1d 8987 . . 3 (¬ +∞ ∈ 𝐴 → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))
1110adantl 485 . 2 ((𝐴 ⊆ ℝ* ∧ ¬ +∞ ∈ 𝐴) → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))
128, 11pm2.61dan 812 1 (𝐴 ⊆ ℝ* → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ∖ cdif 3857   ∪ cun 3858   ⊆ wss 3860  {csn 4525  infcinf 8951  +∞cpnf 10723  ℝ*cxr 10725   < clt 10726 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924 This theorem is referenced by:  supminfxr2  42509
 Copyright terms: Public domain W3C validator