Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindsimp2lem5 Structured version   Visualization version   GIF version

Theorem lindslinindsimp2lem5 45803
Description: Lemma 5 for lindslinindsimp2 45804. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
Assertion
Ref Expression
lindslinindsimp2lem5 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
Distinct variable groups:   𝐵,𝑓,𝑔,𝑦   𝑓,𝑀,𝑔,𝑦   𝑅,𝑓,𝑥   𝑆,𝑓,𝑔,𝑥,𝑦   𝑔,𝑉,𝑦   𝑓,𝑍,𝑔,𝑦   0 ,𝑓,𝑔,𝑥,𝑦   𝑅,𝑔,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindsimp2lem5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . . 3 ((𝑓𝑥) = 0 → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 ))
212a1d 26 . 2 ((𝑓𝑥) = 0 → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 ))))
3 elmapi 8637 . . . . . . . . . 10 (𝑓 ∈ (𝐵m 𝑆) → 𝑓:𝑆𝐵)
4 ffvelrn 6959 . . . . . . . . . . . . . 14 ((𝑓:𝑆𝐵𝑥𝑆) → (𝑓𝑥) ∈ 𝐵)
54expcom 414 . . . . . . . . . . . . 13 (𝑥𝑆 → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
65adantl 482 . . . . . . . . . . . 12 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
76adantl 482 . . . . . . . . . . 11 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
87com12 32 . . . . . . . . . 10 (𝑓:𝑆𝐵 → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
93, 8syl 17 . . . . . . . . 9 (𝑓 ∈ (𝐵m 𝑆) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
109adantr 481 . . . . . . . 8 ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
1110impcom 408 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) ∈ 𝐵)
1211biantrurd 533 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → ((𝑓𝑥) ≠ 0 ↔ ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ≠ 0 )))
13 df-ne 2944 . . . . . . 7 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) = 0 )
1413bicomi 223 . . . . . 6 (¬ (𝑓𝑥) = 0 ↔ (𝑓𝑥) ≠ 0 )
15 eldifsn 4720 . . . . . 6 ((𝑓𝑥) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ≠ 0 ))
1612, 14, 153bitr4g 314 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (¬ (𝑓𝑥) = 0 ↔ (𝑓𝑥) ∈ (𝐵 ∖ { 0 })))
17 lindslinind.r . . . . . . . . . . 11 𝑅 = (Scalar‘𝑀)
1817lmodfgrp 20132 . . . . . . . . . 10 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
1918adantl 482 . . . . . . . . 9 ((𝑆𝑉𝑀 ∈ LMod) → 𝑅 ∈ Grp)
2019adantr 481 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑅 ∈ Grp)
2120adantr 481 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑅 ∈ Grp)
22 lindslinind.b . . . . . . . 8 𝐵 = (Base‘𝑅)
23 lindslinind.0 . . . . . . . 8 0 = (0g𝑅)
24 eqid 2738 . . . . . . . 8 (invg𝑅) = (invg𝑅)
2522, 23, 24grpinvnzcl 18647 . . . . . . 7 ((𝑅 ∈ Grp ∧ (𝑓𝑥) ∈ (𝐵 ∖ { 0 })) → ((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 }))
2621, 25sylan 580 . . . . . 6 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) ∧ (𝑓𝑥) ∈ (𝐵 ∖ { 0 })) → ((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 }))
2726ex 413 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → ((𝑓𝑥) ∈ (𝐵 ∖ { 0 }) → ((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 })))
2816, 27sylbid 239 . . . 4 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (¬ (𝑓𝑥) = 0 → ((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 })))
29 oveq1 7282 . . . . . . . . . . 11 (𝑦 = ((invg𝑅)‘(𝑓𝑥)) → (𝑦( ·𝑠𝑀)𝑥) = (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥))
3029eqeq1d 2740 . . . . . . . . . 10 (𝑦 = ((invg𝑅)‘(𝑓𝑥)) → ((𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
3130notbid 318 . . . . . . . . 9 (𝑦 = ((invg𝑅)‘(𝑓𝑥)) → (¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
3231orbi2d 913 . . . . . . . 8 (𝑦 = ((invg𝑅)‘(𝑓𝑥)) → ((¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
3332ralbidv 3112 . . . . . . 7 (𝑦 = ((invg𝑅)‘(𝑓𝑥)) → (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) ↔ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
3433rspcva 3559 . . . . . 6 ((((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) → ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
35 simpl 483 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆𝑉𝑀 ∈ LMod))
3635adantr 481 . . . . . . . 8 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑆𝑉𝑀 ∈ LMod))
37 simplrl 774 . . . . . . . 8 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑆 ⊆ (Base‘𝑀))
38 simplrr 775 . . . . . . . 8 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑥𝑆)
39 simpl 483 . . . . . . . . 9 ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → 𝑓 ∈ (𝐵m 𝑆))
4039adantl 482 . . . . . . . 8 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑓 ∈ (𝐵m 𝑆))
41 lindslinind.z . . . . . . . . 9 𝑍 = (0g𝑀)
42 eqid 2738 . . . . . . . . 9 ((invg𝑅)‘(𝑓𝑥)) = ((invg𝑅)‘(𝑓𝑥))
43 eqid 2738 . . . . . . . . 9 (𝑓 ↾ (𝑆 ∖ {𝑥})) = (𝑓 ↾ (𝑆 ∖ {𝑥}))
4417, 22, 23, 41, 42, 43lindslinindimp2lem2 45800 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → (𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵m (𝑆 ∖ {𝑥})))
4536, 37, 38, 40, 44syl13anc 1371 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵m (𝑆 ∖ {𝑥})))
46 id 22 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → 𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})))
4723a1i 11 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → 0 = (0g𝑅))
4846, 47breq12d 5087 . . . . . . . . . . . . 13 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → (𝑔 finSupp 0 ↔ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅)))
4948notbid 318 . . . . . . . . . . . 12 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → (¬ 𝑔 finSupp 0 ↔ ¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅)))
50 oveq1 7282 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})))
5150eqeq2d 2749 . . . . . . . . . . . . 13 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → ((((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
5251notbid 318 . . . . . . . . . . . 12 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → (¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
5349, 52orbi12d 916 . . . . . . . . . . 11 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → ((¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) ↔ (¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅) ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
5453rspcva 3559 . . . . . . . . . 10 (((𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵m (𝑆 ∖ {𝑥})) ∧ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) → (¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅) ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
5523breq2i 5082 . . . . . . . . . . . . . . . . . 18 (𝑓 finSupp 0𝑓 finSupp (0g𝑅))
5655biimpi 215 . . . . . . . . . . . . . . . . 17 (𝑓 finSupp 0𝑓 finSupp (0g𝑅))
5756adantr 481 . . . . . . . . . . . . . . . 16 ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → 𝑓 finSupp (0g𝑅))
5857adantl 482 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → 𝑓 finSupp (0g𝑅))
5958adantl 482 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑓 finSupp (0g𝑅))
60 fvexd 6789 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (0g𝑅) ∈ V)
6159, 60fsuppres 9153 . . . . . . . . . . . . 13 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅))
6261pm2.24d 151 . . . . . . . . . . . 12 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅) → (𝑓𝑥) = 0 ))
6362com12 32 . . . . . . . . . . 11 (¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) = 0 ))
64 simplr 766 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑀 ∈ LMod)
6564adantr 481 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑀 ∈ LMod)
6617fveq2i 6777 . . . . . . . . . . . . . . . . . 18 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
6722, 66eqtr2i 2767 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑀)) = 𝐵
6867oveq1i 7285 . . . . . . . . . . . . . . . 16 ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})) = (𝐵m (𝑆 ∖ {𝑥}))
6945, 68eleqtrrdi 2850 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})))
70 ssdifss 4070 . . . . . . . . . . . . . . . . . . 19 (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
7170adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
7271adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
73 difexg 5251 . . . . . . . . . . . . . . . . . . . 20 (𝑆𝑉 → (𝑆 ∖ {𝑥}) ∈ V)
7473adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑆𝑉𝑀 ∈ LMod) → (𝑆 ∖ {𝑥}) ∈ V)
7574adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ∈ V)
76 elpwg 4536 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∖ {𝑥}) ∈ V → ((𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
7775, 76syl 17 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
7872, 77mpbird 256 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀))
7978adantr 481 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀))
80 lincval 45750 . . . . . . . . . . . . . . 15 ((𝑀 ∈ LMod ∧ (𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})) ∧ (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ (((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧)( ·𝑠𝑀)𝑧))))
8165, 69, 79, 80syl3anc 1370 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ (((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧)( ·𝑠𝑀)𝑧))))
82 fvres 6793 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝑆 ∖ {𝑥}) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧) = (𝑓𝑧))
8382adantl 482 . . . . . . . . . . . . . . . . 17 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) ∧ 𝑧 ∈ (𝑆 ∖ {𝑥})) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧) = (𝑓𝑧))
8483oveq1d 7290 . . . . . . . . . . . . . . . 16 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) ∧ 𝑧 ∈ (𝑆 ∖ {𝑥})) → (((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧)( ·𝑠𝑀)𝑧) = ((𝑓𝑧)( ·𝑠𝑀)𝑧))
8584mpteq2dva 5174 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ (((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧)( ·𝑠𝑀)𝑧)) = (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑧)( ·𝑠𝑀)𝑧)))
8685oveq2d 7291 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ (((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧)( ·𝑠𝑀)𝑧))) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑧)( ·𝑠𝑀)𝑧))))
87 simplr 766 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))
88 3anass 1094 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ↔ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)))
8988bicomi 223 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) ↔ (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))
9089biimpi 215 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))
9190adantl 482 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))
9217, 22, 23, 41, 42, 43lindslinindimp2lem4 45802 . . . . . . . . . . . . . . 15 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑧)( ·𝑠𝑀)𝑧))) = (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥))
9336, 87, 91, 92syl3anc 1370 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑧)( ·𝑠𝑀)𝑧))) = (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥))
9481, 86, 933eqtrrd 2783 . . . . . . . . . . . . 13 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})))
9594pm2.24d 151 . . . . . . . . . . . 12 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})) → (𝑓𝑥) = 0 ))
9695com12 32 . . . . . . . . . . 11 (¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) = 0 ))
9763, 96jaoi 854 . . . . . . . . . 10 ((¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅) ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) = 0 ))
9854, 97syl 17 . . . . . . . . 9 (((𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵m (𝑆 ∖ {𝑥})) ∧ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) = 0 ))
9998ex 413 . . . . . . . 8 ((𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵m (𝑆 ∖ {𝑥})) → (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) = 0 )))
10099com23 86 . . . . . . 7 ((𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵m (𝑆 ∖ {𝑥})) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
10145, 100mpcom 38 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 ))
10234, 101syl5 34 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → ((((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) → (𝑓𝑥) = 0 ))
103102expd 416 . . . 4 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 }) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
10428, 103syldc 48 . . 3 (¬ (𝑓𝑥) = 0 → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
105104expd 416 . 2 (¬ (𝑓𝑥) = 0 → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 ))))
1062, 105pm2.61i 182 1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  cdif 3884  wss 3887  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  cmpt 5157  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615   finSupp cfsupp 9128  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150   Σg cgsu 17151  Grpcgrp 18577  invgcminusg 18578  LModclmod 20123   linC clinc 45745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-linc 45747
This theorem is referenced by:  lindslinindsimp2  45804
  Copyright terms: Public domain W3C validator