Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindsimp2lem5 Structured version   Visualization version   GIF version

Theorem lindslinindsimp2lem5 46154
Description: Lemma 5 for lindslinindsimp2 46155. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
Assertion
Ref Expression
lindslinindsimp2lem5 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
Distinct variable groups:   𝐵,𝑓,𝑔,𝑦   𝑓,𝑀,𝑔,𝑦   𝑅,𝑓,𝑥   𝑆,𝑓,𝑔,𝑥,𝑦   𝑔,𝑉,𝑦   𝑓,𝑍,𝑔,𝑦   0 ,𝑓,𝑔,𝑥,𝑦   𝑅,𝑔,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindsimp2lem5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . . 3 ((𝑓𝑥) = 0 → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 ))
212a1d 26 . 2 ((𝑓𝑥) = 0 → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 ))))
3 elmapi 8708 . . . . . . . . . 10 (𝑓 ∈ (𝐵m 𝑆) → 𝑓:𝑆𝐵)
4 ffvelcdm 7015 . . . . . . . . . . . . . 14 ((𝑓:𝑆𝐵𝑥𝑆) → (𝑓𝑥) ∈ 𝐵)
54expcom 414 . . . . . . . . . . . . 13 (𝑥𝑆 → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
65adantl 482 . . . . . . . . . . . 12 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
76adantl 482 . . . . . . . . . . 11 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
87com12 32 . . . . . . . . . 10 (𝑓:𝑆𝐵 → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
93, 8syl 17 . . . . . . . . 9 (𝑓 ∈ (𝐵m 𝑆) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
109adantr 481 . . . . . . . 8 ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
1110impcom 408 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) ∈ 𝐵)
1211biantrurd 533 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → ((𝑓𝑥) ≠ 0 ↔ ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ≠ 0 )))
13 df-ne 2941 . . . . . . 7 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) = 0 )
1413bicomi 223 . . . . . 6 (¬ (𝑓𝑥) = 0 ↔ (𝑓𝑥) ≠ 0 )
15 eldifsn 4734 . . . . . 6 ((𝑓𝑥) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ≠ 0 ))
1612, 14, 153bitr4g 313 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (¬ (𝑓𝑥) = 0 ↔ (𝑓𝑥) ∈ (𝐵 ∖ { 0 })))
17 lindslinind.r . . . . . . . . . . 11 𝑅 = (Scalar‘𝑀)
1817lmodfgrp 20238 . . . . . . . . . 10 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
1918adantl 482 . . . . . . . . 9 ((𝑆𝑉𝑀 ∈ LMod) → 𝑅 ∈ Grp)
2019adantr 481 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑅 ∈ Grp)
2120adantr 481 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑅 ∈ Grp)
22 lindslinind.b . . . . . . . 8 𝐵 = (Base‘𝑅)
23 lindslinind.0 . . . . . . . 8 0 = (0g𝑅)
24 eqid 2736 . . . . . . . 8 (invg𝑅) = (invg𝑅)
2522, 23, 24grpinvnzcl 18743 . . . . . . 7 ((𝑅 ∈ Grp ∧ (𝑓𝑥) ∈ (𝐵 ∖ { 0 })) → ((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 }))
2621, 25sylan 580 . . . . . 6 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) ∧ (𝑓𝑥) ∈ (𝐵 ∖ { 0 })) → ((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 }))
2726ex 413 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → ((𝑓𝑥) ∈ (𝐵 ∖ { 0 }) → ((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 })))
2816, 27sylbid 239 . . . 4 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (¬ (𝑓𝑥) = 0 → ((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 })))
29 oveq1 7344 . . . . . . . . . . 11 (𝑦 = ((invg𝑅)‘(𝑓𝑥)) → (𝑦( ·𝑠𝑀)𝑥) = (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥))
3029eqeq1d 2738 . . . . . . . . . 10 (𝑦 = ((invg𝑅)‘(𝑓𝑥)) → ((𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
3130notbid 317 . . . . . . . . 9 (𝑦 = ((invg𝑅)‘(𝑓𝑥)) → (¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
3231orbi2d 913 . . . . . . . 8 (𝑦 = ((invg𝑅)‘(𝑓𝑥)) → ((¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
3332ralbidv 3170 . . . . . . 7 (𝑦 = ((invg𝑅)‘(𝑓𝑥)) → (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) ↔ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
3433rspcva 3568 . . . . . 6 ((((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) → ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
35 simpl 483 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆𝑉𝑀 ∈ LMod))
3635adantr 481 . . . . . . . 8 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑆𝑉𝑀 ∈ LMod))
37 simplrl 774 . . . . . . . 8 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑆 ⊆ (Base‘𝑀))
38 simplrr 775 . . . . . . . 8 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑥𝑆)
39 simpl 483 . . . . . . . . 9 ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → 𝑓 ∈ (𝐵m 𝑆))
4039adantl 482 . . . . . . . 8 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑓 ∈ (𝐵m 𝑆))
41 lindslinind.z . . . . . . . . 9 𝑍 = (0g𝑀)
42 eqid 2736 . . . . . . . . 9 ((invg𝑅)‘(𝑓𝑥)) = ((invg𝑅)‘(𝑓𝑥))
43 eqid 2736 . . . . . . . . 9 (𝑓 ↾ (𝑆 ∖ {𝑥})) = (𝑓 ↾ (𝑆 ∖ {𝑥}))
4417, 22, 23, 41, 42, 43lindslinindimp2lem2 46151 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → (𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵m (𝑆 ∖ {𝑥})))
4536, 37, 38, 40, 44syl13anc 1371 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵m (𝑆 ∖ {𝑥})))
46 id 22 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → 𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})))
4723a1i 11 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → 0 = (0g𝑅))
4846, 47breq12d 5105 . . . . . . . . . . . . 13 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → (𝑔 finSupp 0 ↔ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅)))
4948notbid 317 . . . . . . . . . . . 12 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → (¬ 𝑔 finSupp 0 ↔ ¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅)))
50 oveq1 7344 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})))
5150eqeq2d 2747 . . . . . . . . . . . . 13 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → ((((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
5251notbid 317 . . . . . . . . . . . 12 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → (¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
5349, 52orbi12d 916 . . . . . . . . . . 11 (𝑔 = (𝑓 ↾ (𝑆 ∖ {𝑥})) → ((¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) ↔ (¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅) ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
5453rspcva 3568 . . . . . . . . . 10 (((𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵m (𝑆 ∖ {𝑥})) ∧ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) → (¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅) ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
5523breq2i 5100 . . . . . . . . . . . . . . . . . 18 (𝑓 finSupp 0𝑓 finSupp (0g𝑅))
5655biimpi 215 . . . . . . . . . . . . . . . . 17 (𝑓 finSupp 0𝑓 finSupp (0g𝑅))
5756adantr 481 . . . . . . . . . . . . . . . 16 ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → 𝑓 finSupp (0g𝑅))
5857adantl 482 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → 𝑓 finSupp (0g𝑅))
5958adantl 482 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑓 finSupp (0g𝑅))
60 fvexd 6840 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (0g𝑅) ∈ V)
6159, 60fsuppres 9251 . . . . . . . . . . . . 13 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅))
6261pm2.24d 151 . . . . . . . . . . . 12 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅) → (𝑓𝑥) = 0 ))
6362com12 32 . . . . . . . . . . 11 (¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) = 0 ))
64 simplr 766 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑀 ∈ LMod)
6564adantr 481 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → 𝑀 ∈ LMod)
6617fveq2i 6828 . . . . . . . . . . . . . . . . . 18 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
6722, 66eqtr2i 2765 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑀)) = 𝐵
6867oveq1i 7347 . . . . . . . . . . . . . . . 16 ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})) = (𝐵m (𝑆 ∖ {𝑥}))
6945, 68eleqtrrdi 2848 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})))
70 ssdifss 4082 . . . . . . . . . . . . . . . . . . 19 (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
7170adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
7271adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
73 difexg 5271 . . . . . . . . . . . . . . . . . . . 20 (𝑆𝑉 → (𝑆 ∖ {𝑥}) ∈ V)
7473adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑆𝑉𝑀 ∈ LMod) → (𝑆 ∖ {𝑥}) ∈ V)
7574adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ∈ V)
76 elpwg 4550 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∖ {𝑥}) ∈ V → ((𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
7775, 76syl 17 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
7872, 77mpbird 256 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀))
7978adantr 481 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀))
80 lincval 46101 . . . . . . . . . . . . . . 15 ((𝑀 ∈ LMod ∧ (𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑥})) ∧ (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ (((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧)( ·𝑠𝑀)𝑧))))
8165, 69, 79, 80syl3anc 1370 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ (((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧)( ·𝑠𝑀)𝑧))))
82 fvres 6844 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝑆 ∖ {𝑥}) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧) = (𝑓𝑧))
8382adantl 482 . . . . . . . . . . . . . . . . 17 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) ∧ 𝑧 ∈ (𝑆 ∖ {𝑥})) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧) = (𝑓𝑧))
8483oveq1d 7352 . . . . . . . . . . . . . . . 16 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) ∧ 𝑧 ∈ (𝑆 ∖ {𝑥})) → (((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧)( ·𝑠𝑀)𝑧) = ((𝑓𝑧)( ·𝑠𝑀)𝑧))
8584mpteq2dva 5192 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ (((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧)( ·𝑠𝑀)𝑧)) = (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑧)( ·𝑠𝑀)𝑧)))
8685oveq2d 7353 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ (((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑧)( ·𝑠𝑀)𝑧))) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑧)( ·𝑠𝑀)𝑧))))
87 simplr 766 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))
88 3anass 1094 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ↔ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)))
8988bicomi 223 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) ↔ (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))
9089biimpi 215 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))
9190adantl 482 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))
9217, 22, 23, 41, 42, 43lindslinindimp2lem4 46153 . . . . . . . . . . . . . . 15 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑧)( ·𝑠𝑀)𝑧))) = (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥))
9336, 87, 91, 92syl3anc 1370 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑧)( ·𝑠𝑀)𝑧))) = (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥))
9481, 86, 933eqtrrd 2781 . . . . . . . . . . . . 13 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})))
9594pm2.24d 151 . . . . . . . . . . . 12 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})) → (𝑓𝑥) = 0 ))
9695com12 32 . . . . . . . . . . 11 (¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥})) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) = 0 ))
9763, 96jaoi 854 . . . . . . . . . 10 ((¬ (𝑓 ↾ (𝑆 ∖ {𝑥})) finSupp (0g𝑅) ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) = 0 ))
9854, 97syl 17 . . . . . . . . 9 (((𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵m (𝑆 ∖ {𝑥})) ∧ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) = 0 ))
9998ex 413 . . . . . . . 8 ((𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵m (𝑆 ∖ {𝑥})) → (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (𝑓𝑥) = 0 )))
10099com23 86 . . . . . . 7 ((𝑓 ↾ (𝑆 ∖ {𝑥})) ∈ (𝐵m (𝑆 ∖ {𝑥})) → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
10145, 100mpcom 38 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 ))
10234, 101syl5 34 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → ((((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) → (𝑓𝑥) = 0 ))
103102expd 416 . . . 4 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (((invg𝑅)‘(𝑓𝑥)) ∈ (𝐵 ∖ { 0 }) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
10428, 103syldc 48 . . 3 (¬ (𝑓𝑥) = 0 → ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍))) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
105104expd 416 . 2 (¬ (𝑓𝑥) = 0 → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 ))))
1062, 105pm2.61i 182 1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wral 3061  Vcvv 3441  cdif 3895  wss 3898  𝒫 cpw 4547  {csn 4573   class class class wbr 5092  cmpt 5175  cres 5622  wf 6475  cfv 6479  (class class class)co 7337  m cmap 8686   finSupp cfsupp 9226  Basecbs 17009  Scalarcsca 17062   ·𝑠 cvsca 17063  0gc0g 17247   Σg cgsu 17248  Grpcgrp 18673  invgcminusg 18674  LModclmod 20229   linC clinc 46096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-n0 12335  df-z 12421  df-uz 12684  df-fz 13341  df-fzo 13484  df-seq 13823  df-hash 14146  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-0g 17249  df-gsum 17250  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-grp 18676  df-minusg 18677  df-mulg 18797  df-cntz 19019  df-cmn 19483  df-abl 19484  df-mgp 19816  df-ur 19833  df-ring 19880  df-lmod 20231  df-linc 46098
This theorem is referenced by:  lindslinindsimp2  46155
  Copyright terms: Public domain W3C validator