MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltex1 Structured version   Visualization version   GIF version

Theorem ssltex1 27706
Description: The first argument of surreal set less-than exists. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
ssltex1 (𝐴 <<s 𝐵𝐴 ∈ V)

Proof of Theorem ssltex1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brsslt 27705 . 2 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
2 simpll 766 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)) → 𝐴 ∈ V)
31, 2sylbi 216 1 (𝐴 <<s 𝐵𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2099  wral 3056  Vcvv 3469  wss 3944   class class class wbr 5142   No csur 27560   <s cslt 27561   <<s csslt 27700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-xp 5678  df-sslt 27701
This theorem is referenced by:  sssslt1  27715  sssslt2  27716  conway  27719  scutval  27720  sslttr  27727  ssltun1  27728  ssltun2  27729  etasslt  27733  etasslt2  27734  scutbdaybnd2lim  27737  slerec  27739  madecut  27796  coinitsslt  27826  cofcut1  27827  cofcutr  27831  cutlt  27839  addsuniflem  27905  negsunif  27954  ssltmul1  28034  ssltmul2  28035  precsexlem11  28102
  Copyright terms: Public domain W3C validator