| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltex1 | Structured version Visualization version GIF version | ||
| Description: The first argument of surreal set less-than exists. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| ssltex1 | ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsslt 27704 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
| 2 | simpll 766 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) → 𝐴 ∈ V) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 No csur 27558 <s cslt 27559 <<s csslt 27699 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-sslt 27700 |
| This theorem is referenced by: sssslt1 27714 sssslt2 27715 conway 27718 scutval 27719 sslttr 27726 ssltun1 27727 ssltun2 27728 etasslt 27732 etasslt2 27733 scutbdaybnd2lim 27736 slerec 27738 madecut 27801 coinitsslt 27834 cofcut1 27835 cofcutr 27839 cutlt 27847 addsuniflem 27915 negsunif 27968 ssltmul1 28057 ssltmul2 28058 precsexlem11 28126 |
| Copyright terms: Public domain | W3C validator |