Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssltex1 | Structured version Visualization version GIF version |
Description: The first argument of surreal set less than exists. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
ssltex1 | ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsslt 33907 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
2 | simpll 763 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) → 𝐴 ∈ V) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 No csur 33770 <s cslt 33771 <<s csslt 33902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-sslt 33903 |
This theorem is referenced by: sssslt1 33916 sssslt2 33917 conway 33920 scutval 33921 sslttr 33928 ssltun1 33929 ssltun2 33930 etasslt 33934 etasslt2 33935 scutbdaybnd2lim 33938 slerec 33940 madecut 33992 coinitsslt 34016 cofcut1 34017 cofcutr 34019 |
Copyright terms: Public domain | W3C validator |