Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssltss2 Structured version   Visualization version   GIF version

Theorem ssltss2 32230
Description: The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
ssltss2 (𝐴 <<s 𝐵𝐵 No )

Proof of Theorem ssltss2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brsslt 32226 . 2 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
2 simpr2 1243 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)) → 𝐵 No )
31, 2sylbi 208 1 (𝐴 <<s 𝐵𝐵 No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100  wcel 2157  wral 3103  Vcvv 3398  wss 3776   class class class wbr 4851   No csur 32119   <s cslt 32120   <<s csslt 32222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pr 5103
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3400  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-sn 4378  df-pr 4380  df-op 4384  df-br 4852  df-opab 4914  df-xp 5324  df-sslt 32223
This theorem is referenced by:  sssslt1  32232  sssslt2  32233  conway  32236  sslttr  32240  ssltun1  32241  ssltun2  32242  etasslt  32246  slerec  32249  sltrec  32250
  Copyright terms: Public domain W3C validator