MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltss2 Structured version   Visualization version   GIF version

Theorem ssltss2 27718
Description: The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
ssltss2 (𝐴 <<s 𝐵𝐵 No )

Proof of Theorem ssltss2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brsslt 27714 . 2 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
2 simpr2 1196 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)) → 𝐵 No )
31, 2sylbi 217 1 (𝐴 <<s 𝐵𝐵 No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wral 3044  Vcvv 3438  wss 3905   class class class wbr 5095   No csur 27567   <s cslt 27568   <<s csslt 27709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-sslt 27710
This theorem is referenced by:  sssslt1  27724  sssslt2  27725  conway  27728  sslttr  27736  ssltun1  27737  ssltun2  27738  etasslt  27742  slerec  27748  sltrec  27750  eqscut3  27753  cofsslt  27849  coinitsslt  27850  cofcut1  27851  cofcutr  27855  cutlt  27863  cutmax  27865  addsuniflem  27931  negsunif  27984  ssltmul1  28073  ssltmul2  28074  mulsuniflem  28075  mulsunif2lem  28095  precsexlem11  28142  renegscl  28385
  Copyright terms: Public domain W3C validator