| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltss2 | Structured version Visualization version GIF version | ||
| Description: The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| ssltss2 | ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsslt 27726 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
| 2 | simpr2 1196 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) → 𝐵 ⊆ No ) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⊆ wss 3898 class class class wbr 5093 No csur 27579 <s cslt 27580 <<s csslt 27721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-sslt 27722 |
| This theorem is referenced by: sssslt1 27737 sssslt2 27738 conway 27741 sslttr 27749 ssltun1 27750 ssltun2 27751 etasslt 27755 slerec 27761 sltrec 27763 eqscut3 27766 cofsslt 27863 coinitsslt 27864 cofcut1 27865 cofcutr 27869 cutlt 27877 cutmax 27879 addsuniflem 27945 negsunif 27998 ssltmul1 28087 ssltmul2 28088 mulsuniflem 28089 mulsunif2lem 28109 precsexlem11 28156 renegscl 28401 |
| Copyright terms: Public domain | W3C validator |