| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltss2 | Structured version Visualization version GIF version | ||
| Description: The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| ssltss2 | ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsslt 27714 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
| 2 | simpr2 1196 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) → 𝐵 ⊆ No ) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ⊆ wss 3905 class class class wbr 5095 No csur 27567 <s cslt 27568 <<s csslt 27709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-sslt 27710 |
| This theorem is referenced by: sssslt1 27724 sssslt2 27725 conway 27728 sslttr 27736 ssltun1 27737 ssltun2 27738 etasslt 27742 slerec 27748 sltrec 27750 eqscut3 27753 cofsslt 27849 coinitsslt 27850 cofcut1 27851 cofcutr 27855 cutlt 27863 cutmax 27865 addsuniflem 27931 negsunif 27984 ssltmul1 28073 ssltmul2 28074 mulsuniflem 28075 mulsunif2lem 28095 precsexlem11 28142 renegscl 28385 |
| Copyright terms: Public domain | W3C validator |