Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssltss2 Structured version   Visualization version   GIF version

Theorem ssltss2 33911
Description: The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
ssltss2 (𝐴 <<s 𝐵𝐵 No )

Proof of Theorem ssltss2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brsslt 33907 . 2 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
2 simpr2 1193 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)) → 𝐵 No )
31, 2sylbi 216 1 (𝐴 <<s 𝐵𝐵 No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  wral 3063  Vcvv 3422  wss 3883   class class class wbr 5070   No csur 33770   <s cslt 33771   <<s csslt 33902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-sslt 33903
This theorem is referenced by:  sssslt1  33916  sssslt2  33917  conway  33920  sslttr  33928  ssltun1  33929  ssltun2  33930  etasslt  33934  slerec  33940  sltrec  33941  cofsslt  34015  coinitsslt  34016  cofcut1  34017  cofcutr  34019
  Copyright terms: Public domain W3C validator