MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltss2 Structured version   Visualization version   GIF version

Theorem ssltss2 27672
Description: The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
ssltss2 (𝐴 <<s 𝐵𝐵 No )

Proof of Theorem ssltss2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brsslt 27668 . 2 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
2 simpr2 1192 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)) → 𝐵 No )
31, 2sylbi 216 1 (𝐴 <<s 𝐵𝐵 No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084  wcel 2098  wral 3055  Vcvv 3468  wss 3943   class class class wbr 5141   No csur 27523   <s cslt 27524   <<s csslt 27663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-xp 5675  df-sslt 27664
This theorem is referenced by:  sssslt1  27678  sssslt2  27679  conway  27682  sslttr  27690  ssltun1  27691  ssltun2  27692  etasslt  27696  slerec  27702  sltrec  27703  cofsslt  27788  coinitsslt  27789  cofcut1  27790  cofcutr  27794  cutlt  27802  addsuniflem  27868  negsunif  27917  ssltmul1  27997  ssltmul2  27998  mulsuniflem  27999  mulsunif2lem  28019  precsexlem11  28065  renegscl  28176
  Copyright terms: Public domain W3C validator