| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltss2 | Structured version Visualization version GIF version | ||
| Description: The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| ssltss2 | ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsslt 27697 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
| 2 | simpr2 1196 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) → 𝐵 ⊆ No ) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 No csur 27551 <s cslt 27552 <<s csslt 27692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-sslt 27693 |
| This theorem is referenced by: sssslt1 27707 sssslt2 27708 conway 27711 sslttr 27719 ssltun1 27720 ssltun2 27721 etasslt 27725 slerec 27731 sltrec 27732 cofsslt 27826 coinitsslt 27827 cofcut1 27828 cofcutr 27832 cutlt 27840 cutmax 27842 addsuniflem 27908 negsunif 27961 ssltmul1 28050 ssltmul2 28051 mulsuniflem 28052 mulsunif2lem 28072 precsexlem11 28119 renegscl 28349 |
| Copyright terms: Public domain | W3C validator |