MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltss2 Structured version   Visualization version   GIF version

Theorem ssltss2 27708
Description: The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
ssltss2 (𝐴 <<s 𝐵𝐵 No )

Proof of Theorem ssltss2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brsslt 27704 . 2 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
2 simpr2 1196 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)) → 𝐵 No )
31, 2sylbi 217 1 (𝐴 <<s 𝐵𝐵 No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wral 3045  Vcvv 3450  wss 3917   class class class wbr 5110   No csur 27558   <s cslt 27559   <<s csslt 27699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-sslt 27700
This theorem is referenced by:  sssslt1  27714  sssslt2  27715  conway  27718  sslttr  27726  ssltun1  27727  ssltun2  27728  etasslt  27732  slerec  27738  sltrec  27739  cofsslt  27833  coinitsslt  27834  cofcut1  27835  cofcutr  27839  cutlt  27847  cutmax  27849  addsuniflem  27915  negsunif  27968  ssltmul1  28057  ssltmul2  28058  mulsuniflem  28059  mulsunif2lem  28079  precsexlem11  28126  renegscl  28356
  Copyright terms: Public domain W3C validator