Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unexd | Structured version Visualization version GIF version |
Description: The union of two sets is a set. (Contributed by SN, 16-Jul-2024.) |
Ref | Expression |
---|---|
unexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
unexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
unexd | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | unexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | unexg 7534 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Vcvv 3408 ∪ cun 3864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-sn 4542 df-pr 4544 df-uni 4820 |
This theorem is referenced by: sexp2 33530 sexp3 33536 ssltun1 33739 ssltun2 33740 ofun 39924 |
Copyright terms: Public domain | W3C validator |