MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unexd Structured version   Visualization version   GIF version

Theorem unexd 7753
Description: The union of two sets is a set. (Contributed by SN, 16-Jul-2024.)
Hypotheses
Ref Expression
unexd.1 (𝜑𝐴𝑉)
unexd.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
unexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem unexd
StepHypRef Expression
1 unexd.1 . 2 (𝜑𝐴𝑉)
2 unexd.2 . 2 (𝜑𝐵𝑊)
3 unexg 7742 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3464  cun 3929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-sn 4607  df-pr 4609  df-uni 4889
This theorem is referenced by:  sexp2  8150  sexp3  8157  ssltun1  27777  ssltun2  27778  addsproplem2  27934  addsuniflem  27965  ssltmul1  28107  ssltmul2  28108  precsexlem11  28176  suppun2  32666  elrgspnsubrunlem1  33247  elrgspnsubrunlem2  33248  elrgspnsubrun  33249  elrspunsn  33449  ofun  42254  tfsconcatun  43328  rclexi  43606  rtrclexlem  43607  trclubgNEW  43609  cnvrcl0  43616  dfrtrcl5  43620  iunrelexp0  43693  relexpmulg  43701  relexp01min  43704  clnbgrval  47803
  Copyright terms: Public domain W3C validator