MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unexd Structured version   Visualization version   GIF version

Theorem unexd 7598
Description: The union of two sets is a set. (Contributed by SN, 16-Jul-2024.)
Hypotheses
Ref Expression
unexd.1 (𝜑𝐴𝑉)
unexd.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
unexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem unexd
StepHypRef Expression
1 unexd.1 . 2 (𝜑𝐴𝑉)
2 unexd.2 . 2 (𝜑𝐵𝑊)
3 unexg 7593 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  Vcvv 3431  cun 3890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-sn 4568  df-pr 4570  df-uni 4846
This theorem is referenced by:  sexp2  33789  sexp3  33795  ssltun1  33998  ssltun2  33999  ofun  40208
  Copyright terms: Public domain W3C validator