| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unexd | Structured version Visualization version GIF version | ||
| Description: The union of two sets is a set. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| unexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| unexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| unexd | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | unexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | unexg 7722 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-sn 4593 df-pr 4595 df-uni 4875 |
| This theorem is referenced by: sexp2 8128 sexp3 8135 ssltun1 27727 ssltun2 27728 addsproplem2 27884 addsuniflem 27915 ssltmul1 28057 ssltmul2 28058 precsexlem11 28126 suppun2 32614 elrgspnsubrunlem1 33205 elrgspnsubrunlem2 33206 elrgspnsubrun 33207 elrspunsn 33407 ofun 42231 tfsconcatun 43333 rclexi 43611 rtrclexlem 43612 trclubgNEW 43614 cnvrcl0 43621 dfrtrcl5 43625 iunrelexp0 43698 relexpmulg 43706 relexp01min 43709 clnbgrval 47827 |
| Copyright terms: Public domain | W3C validator |