| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unexd | Structured version Visualization version GIF version | ||
| Description: The union of two sets is a set. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| unexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| unexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| unexd | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | unexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | unexg 7735 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 df-uni 4884 |
| This theorem is referenced by: sexp2 8143 sexp3 8150 ssltun1 27770 ssltun2 27771 addsproplem2 27920 addsuniflem 27951 ssltmul1 28090 ssltmul2 28091 precsexlem11 28158 suppun2 32607 elrgspnsubrunlem1 33188 elrgspnsubrunlem2 33189 elrgspnsubrun 33190 elrspunsn 33390 ofun 42234 tfsconcatun 43308 rclexi 43586 rtrclexlem 43587 trclubgNEW 43589 cnvrcl0 43596 dfrtrcl5 43600 iunrelexp0 43673 relexpmulg 43681 relexp01min 43684 clnbgrval 47784 |
| Copyright terms: Public domain | W3C validator |