MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unexd Structured version   Visualization version   GIF version

Theorem unexd 7582
Description: The union of two sets is a set. (Contributed by SN, 16-Jul-2024.)
Hypotheses
Ref Expression
unexd.1 (𝜑𝐴𝑉)
unexd.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
unexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem unexd
StepHypRef Expression
1 unexd.1 . 2 (𝜑𝐴𝑉)
2 unexd.2 . 2 (𝜑𝐵𝑊)
3 unexg 7577 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
41, 2, 3syl2anc 583 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3422  cun 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561  df-uni 4837
This theorem is referenced by:  sexp2  33720  sexp3  33726  ssltun1  33929  ssltun2  33930  ofun  40137
  Copyright terms: Public domain W3C validator