| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unexd | Structured version Visualization version GIF version | ||
| Description: The union of two sets is a set. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| unexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| unexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| unexd | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | unexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | unexg 7742 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-uni 4889 |
| This theorem is referenced by: sexp2 8150 sexp3 8157 ssltun1 27777 ssltun2 27778 addsproplem2 27934 addsuniflem 27965 ssltmul1 28107 ssltmul2 28108 precsexlem11 28176 suppun2 32666 elrgspnsubrunlem1 33247 elrgspnsubrunlem2 33248 elrgspnsubrun 33249 elrspunsn 33449 ofun 42254 tfsconcatun 43328 rclexi 43606 rtrclexlem 43607 trclubgNEW 43609 cnvrcl0 43616 dfrtrcl5 43620 iunrelexp0 43693 relexpmulg 43701 relexp01min 43704 clnbgrval 47803 |
| Copyright terms: Public domain | W3C validator |