| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unexd | Structured version Visualization version GIF version | ||
| Description: The union of two sets is a set. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| unexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| unexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| unexd | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | unexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | unexg 7683 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3438 ∪ cun 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-sn 4580 df-pr 4582 df-uni 4862 |
| This theorem is referenced by: sexp2 8086 sexp3 8093 ssltun1 27737 ssltun2 27738 addsproplem2 27900 addsuniflem 27931 ssltmul1 28073 ssltmul2 28074 precsexlem11 28142 suppun2 32640 elrgspnsubrunlem1 33197 elrgspnsubrunlem2 33198 elrgspnsubrun 33199 elrspunsn 33376 ofun 42209 tfsconcatun 43310 rclexi 43588 rtrclexlem 43589 trclubgNEW 43591 cnvrcl0 43598 dfrtrcl5 43602 iunrelexp0 43675 relexpmulg 43683 relexp01min 43686 clnbgrval 47807 |
| Copyright terms: Public domain | W3C validator |