![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unexd | Structured version Visualization version GIF version |
Description: The union of two sets is a set. (Contributed by SN, 16-Jul-2024.) |
Ref | Expression |
---|---|
unexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
unexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
unexd | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | unexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | unexg 7778 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 |
This theorem is referenced by: sexp2 8187 sexp3 8194 ssltun1 27871 ssltun2 27872 addsproplem2 28021 addsuniflem 28052 ssltmul1 28191 ssltmul2 28192 precsexlem11 28259 elrspunsn 33422 ofun 42231 tfsconcatun 43299 rclexi 43577 rtrclexlem 43578 trclubgNEW 43580 cnvrcl0 43587 dfrtrcl5 43591 iunrelexp0 43664 relexpmulg 43672 relexp01min 43675 clnbgrval 47696 |
Copyright terms: Public domain | W3C validator |