| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unexd | Structured version Visualization version GIF version | ||
| Description: The union of two sets is a set. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| unexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| unexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| unexd | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | unexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | unexg 7676 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ∪ cun 3900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-sn 4577 df-pr 4579 df-uni 4860 |
| This theorem is referenced by: sexp2 8076 sexp3 8083 ssltun1 27750 ssltun2 27751 addsproplem2 27914 addsuniflem 27945 ssltmul1 28087 ssltmul2 28088 precsexlem11 28156 suppun2 32663 elrgspnsubrunlem1 33212 elrgspnsubrunlem2 33213 elrgspnsubrun 33214 elrspunsn 33392 ofun 42275 tfsconcatun 43376 rclexi 43654 rtrclexlem 43655 trclubgNEW 43657 cnvrcl0 43664 dfrtrcl5 43668 iunrelexp0 43741 relexpmulg 43749 relexp01min 43752 clnbgrval 47859 |
| Copyright terms: Public domain | W3C validator |