![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssltss1 | Structured version Visualization version GIF version |
Description: The first argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
ssltss1 | ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsslt 27848 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
2 | simpr1 1194 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) → 𝐴 ⊆ No ) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 No csur 27702 <s cslt 27703 <<s csslt 27843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-sslt 27844 |
This theorem is referenced by: sssslt1 27858 sssslt2 27859 conway 27862 scutval 27863 sslttr 27870 ssltun1 27871 ssltun2 27872 dmscut 27874 etasslt 27876 slerec 27882 sltrec 27883 ssltdisj 27884 cofsslt 27970 coinitsslt 27971 cofcut1 27972 cofcutr 27976 cutlt 27984 cutmin 27987 addsuniflem 28052 negsunif 28105 ssltmul1 28191 ssltmul2 28192 mulsuniflem 28193 mulsunif2lem 28213 precsexlem11 28259 renegscl 28448 |
Copyright terms: Public domain | W3C validator |