![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssltss1 | Structured version Visualization version GIF version |
Description: The first argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
ssltss1 | ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsslt 27712 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
2 | simpr1 1192 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) → 𝐴 ⊆ No ) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 ∀wral 3057 Vcvv 3470 ⊆ wss 3945 class class class wbr 5143 No csur 27567 <s cslt 27568 <<s csslt 27707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-xp 5679 df-sslt 27708 |
This theorem is referenced by: sssslt1 27722 sssslt2 27723 conway 27726 scutval 27727 sslttr 27734 ssltun1 27735 ssltun2 27736 dmscut 27738 etasslt 27740 slerec 27746 sltrec 27747 ssltdisj 27748 cofsslt 27832 coinitsslt 27833 cofcut1 27834 cofcutr 27838 cutlt 27846 addsuniflem 27912 negsunif 27961 ssltmul1 28041 ssltmul2 28042 mulsuniflem 28043 mulsunif2lem 28063 precsexlem11 28109 renegscl 28220 |
Copyright terms: Public domain | W3C validator |