Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssltss1 | Structured version Visualization version GIF version |
Description: The first argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
ssltss1 | ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsslt 33907 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
2 | simpr1 1192 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) → 𝐴 ⊆ No ) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 No csur 33770 <s cslt 33771 <<s csslt 33902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-sslt 33903 |
This theorem is referenced by: sssslt1 33916 sssslt2 33917 conway 33920 scutval 33921 sslttr 33928 ssltun1 33929 ssltun2 33930 dmscut 33932 etasslt 33934 slerec 33940 sltrec 33941 ssltdisj 33942 cofsslt 34015 coinitsslt 34016 cofcut1 34017 cofcutr 34019 |
Copyright terms: Public domain | W3C validator |