Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssltss1 Structured version   Visualization version   GIF version

Theorem ssltss1 33910
Description: The first argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
ssltss1 (𝐴 <<s 𝐵𝐴 No )

Proof of Theorem ssltss1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brsslt 33907 . 2 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
2 simpr1 1192 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)) → 𝐴 No )
31, 2sylbi 216 1 (𝐴 <<s 𝐵𝐴 No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  wral 3063  Vcvv 3422  wss 3883   class class class wbr 5070   No csur 33770   <s cslt 33771   <<s csslt 33902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-sslt 33903
This theorem is referenced by:  sssslt1  33916  sssslt2  33917  conway  33920  scutval  33921  sslttr  33928  ssltun1  33929  ssltun2  33930  dmscut  33932  etasslt  33934  slerec  33940  sltrec  33941  ssltdisj  33942  cofsslt  34015  coinitsslt  34016  cofcut1  34017  cofcutr  34019
  Copyright terms: Public domain W3C validator