Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssltss1 | Structured version Visualization version GIF version |
Description: The first argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
ssltss1 | ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsslt 33717 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
2 | simpr1 1196 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) → 𝐴 ⊆ No ) | |
3 | 1, 2 | sylbi 220 | 1 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 ∈ wcel 2110 ∀wral 3061 Vcvv 3408 ⊆ wss 3866 class class class wbr 5053 No csur 33580 <s cslt 33581 <<s csslt 33712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-xp 5557 df-sslt 33713 |
This theorem is referenced by: sssslt1 33726 sssslt2 33727 conway 33730 scutval 33731 sslttr 33738 ssltun1 33739 ssltun2 33740 dmscut 33742 etasslt 33744 slerec 33750 sltrec 33751 ssltdisj 33752 cofsslt 33825 coinitsslt 33826 cofcut1 33827 cofcutr 33829 |
Copyright terms: Public domain | W3C validator |