| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltss1 | Structured version Visualization version GIF version | ||
| Description: The first argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| ssltss1 | ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsslt 27754 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
| 2 | simpr1 1195 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) → 𝐴 ⊆ No ) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ⊆ wss 3931 class class class wbr 5124 No csur 27608 <s cslt 27609 <<s csslt 27749 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-sslt 27750 |
| This theorem is referenced by: sssslt1 27764 sssslt2 27765 conway 27768 scutval 27769 sslttr 27776 ssltun1 27777 ssltun2 27778 dmscut 27780 etasslt 27782 slerec 27788 sltrec 27789 ssltdisj 27790 cofsslt 27883 coinitsslt 27884 cofcut1 27885 cofcutr 27889 cutlt 27897 cutmin 27900 addsuniflem 27965 negsunif 28018 ssltmul1 28107 ssltmul2 28108 mulsuniflem 28109 mulsunif2lem 28129 precsexlem11 28176 renegscl 28406 |
| Copyright terms: Public domain | W3C validator |