| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltss1 | Structured version Visualization version GIF version | ||
| Description: The first argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| ssltss1 | ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsslt 27673 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
| 2 | simpr1 1195 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) → 𝐴 ⊆ No ) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 class class class wbr 5102 No csur 27527 <s cslt 27528 <<s csslt 27668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-sslt 27669 |
| This theorem is referenced by: sssslt1 27683 sssslt2 27684 conway 27687 scutval 27688 sslttr 27695 ssltun1 27696 ssltun2 27697 dmscut 27699 etasslt 27701 slerec 27707 sltrec 27708 ssltdisj 27709 cofsslt 27802 coinitsslt 27803 cofcut1 27804 cofcutr 27808 cutlt 27816 cutmin 27819 addsuniflem 27884 negsunif 27937 ssltmul1 28026 ssltmul2 28027 mulsuniflem 28028 mulsunif2lem 28048 precsexlem11 28095 renegscl 28325 |
| Copyright terms: Public domain | W3C validator |