MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltex2 Structured version   Visualization version   GIF version

Theorem ssltex2 27705
Description: The second argument of surreal set less-than exists. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
ssltex2 (𝐴 <<s 𝐵𝐵 ∈ V)

Proof of Theorem ssltex2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brsslt 27703 . 2 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
2 simplr 768 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)) → 𝐵 ∈ V)
31, 2sylbi 217 1 (𝐴 <<s 𝐵𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wral 3045  Vcvv 3450  wss 3916   class class class wbr 5109   No csur 27557   <s cslt 27558   <<s csslt 27698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646  df-sslt 27699
This theorem is referenced by:  sssslt1  27713  sssslt2  27714  conway  27717  scutval  27718  sslttr  27725  ssltun1  27726  ssltun2  27727  etasslt  27731  etasslt2  27732  scutbdaybnd2lim  27735  slerec  27737  madecut  27800  cofsslt  27832  cofcut1  27834  cofcutr  27838  cutlt  27846  addsuniflem  27914  negsunif  27967  ssltmul1  28056  ssltmul2  28057  precsexlem11  28125
  Copyright terms: Public domain W3C validator