Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scutun12 Structured version   Visualization version   GIF version

Theorem scutun12 33331
Description: Union law for surreal cuts. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
scutun12 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝐴 |s 𝐵))

Proof of Theorem scutun12
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . . . . 7 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐴 <<s 𝐵)
2 scutcut 33326 . . . . . . 7 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
31, 2syl 17 . . . . . 6 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
43simp2d 1140 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐴 <<s {(𝐴 |s 𝐵)})
5 simp2 1134 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐶 <<s {(𝐴 |s 𝐵)})
6 ssltun1 33329 . . . . 5 ((𝐴 <<s {(𝐴 |s 𝐵)} ∧ 𝐶 <<s {(𝐴 |s 𝐵)}) → (𝐴𝐶) <<s {(𝐴 |s 𝐵)})
74, 5, 6syl2anc 587 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴𝐶) <<s {(𝐴 |s 𝐵)})
83simp3d 1141 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s 𝐵)
9 simp3 1135 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s 𝐷)
10 ssltun2 33330 . . . . 5 (({(𝐴 |s 𝐵)} <<s 𝐵 ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s (𝐵𝐷))
118, 9, 10syl2anc 587 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s (𝐵𝐷))
12 ovex 7182 . . . . . 6 (𝐴 |s 𝐵) ∈ V
1312snnz 4696 . . . . 5 {(𝐴 |s 𝐵)} ≠ ∅
14 sslttr 33328 . . . . 5 (((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷) ∧ {(𝐴 |s 𝐵)} ≠ ∅) → (𝐴𝐶) <<s (𝐵𝐷))
1513, 14mp3an3 1447 . . . 4 (((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷)) → (𝐴𝐶) <<s (𝐵𝐷))
167, 11, 15syl2anc 587 . . 3 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴𝐶) <<s (𝐵𝐷))
17 scutval 33325 . . 3 ((𝐴𝐶) <<s (𝐵𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
1816, 17syl 17 . 2 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
19 vex 3483 . . . . . . . . . 10 𝑥 ∈ V
2019elima 5921 . . . . . . . . 9 (𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ∃𝑧 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}𝑧 bday 𝑥)
21 sneq 4560 . . . . . . . . . . . 12 (𝑦 = 𝑧 → {𝑦} = {𝑧})
2221breq2d 5064 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝐴𝐶) <<s {𝑦} ↔ (𝐴𝐶) <<s {𝑧}))
2321breq1d 5062 . . . . . . . . . . 11 (𝑦 = 𝑧 → ({𝑦} <<s (𝐵𝐷) ↔ {𝑧} <<s (𝐵𝐷)))
2422, 23anbi12d 633 . . . . . . . . . 10 (𝑦 = 𝑧 → (((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷)) ↔ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))))
2524rexrab 3673 . . . . . . . . 9 (∃𝑧 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}𝑧 bday 𝑥 ↔ ∃𝑧 No (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥))
2620, 25bitri 278 . . . . . . . 8 (𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ∃𝑧 No (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥))
27 simplr 768 . . . . . . . . . . . . 13 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝑧 No )
28 bdayfn 33303 . . . . . . . . . . . . . 14 bday Fn No
29 fnbrfvb 6709 . . . . . . . . . . . . . 14 (( bday Fn No 𝑧 No ) → (( bday 𝑧) = 𝑥𝑧 bday 𝑥))
3028, 29mpan 689 . . . . . . . . . . . . 13 (𝑧 No → (( bday 𝑧) = 𝑥𝑧 bday 𝑥))
3127, 30syl 17 . . . . . . . . . . . 12 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (( bday 𝑧) = 𝑥𝑧 bday 𝑥))
32 simpll1 1209 . . . . . . . . . . . . . . 15 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝐴 <<s 𝐵)
33 scutbday 33327 . . . . . . . . . . . . . . 15 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3432, 33syl 17 . . . . . . . . . . . . . 14 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
35 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (𝐴𝐶) <<s {𝑧})
36 ssun1 4134 . . . . . . . . . . . . . . . . . . . 20 𝐴 ⊆ (𝐴𝐶)
37 sssslt1 33320 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐶) <<s {𝑧} ∧ 𝐴 ⊆ (𝐴𝐶)) → 𝐴 <<s {𝑧})
3836, 37mpan2 690 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐶) <<s {𝑧} → 𝐴 <<s {𝑧})
3935, 38syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝐴 <<s {𝑧})
40 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → {𝑧} <<s (𝐵𝐷))
41 ssun1 4134 . . . . . . . . . . . . . . . . . . . 20 𝐵 ⊆ (𝐵𝐷)
42 sssslt2 33321 . . . . . . . . . . . . . . . . . . . 20 (({𝑧} <<s (𝐵𝐷) ∧ 𝐵 ⊆ (𝐵𝐷)) → {𝑧} <<s 𝐵)
4341, 42mpan2 690 . . . . . . . . . . . . . . . . . . 19 ({𝑧} <<s (𝐵𝐷) → {𝑧} <<s 𝐵)
4440, 43syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → {𝑧} <<s 𝐵)
4539, 44jca 515 . . . . . . . . . . . . . . . . 17 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵))
4621breq2d 5064 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑧}))
4721breq1d 5062 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → ({𝑦} <<s 𝐵 ↔ {𝑧} <<s 𝐵))
4846, 47anbi12d 633 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵)))
4948elrab 3666 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ (𝑧 No ∧ (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵)))
5027, 45, 49sylanbrc 586 . . . . . . . . . . . . . . . 16 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
51 ssrab2 4042 . . . . . . . . . . . . . . . . 17 {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No
52 fnfvima 6987 . . . . . . . . . . . . . . . . 17 (( bday Fn No ∧ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No 𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
5328, 51, 52mp3an12 1448 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} → ( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
5450, 53syl 17 . . . . . . . . . . . . . . 15 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
55 intss1 4877 . . . . . . . . . . . . . . 15 (( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑧))
5654, 55syl 17 . . . . . . . . . . . . . 14 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑧))
5734, 56eqsstrd 3991 . . . . . . . . . . . . 13 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧))
58 sseq2 3979 . . . . . . . . . . . . . . 15 (( bday 𝑧) = 𝑥 → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧) ↔ ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
5958biimpd 232 . . . . . . . . . . . . . 14 (( bday 𝑧) = 𝑥 → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6059com12 32 . . . . . . . . . . . . 13 (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧) → (( bday 𝑧) = 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6157, 60syl 17 . . . . . . . . . . . 12 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (( bday 𝑧) = 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6231, 61sylbird 263 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (𝑧 bday 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6362ex 416 . . . . . . . . . 10 (((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) → (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) → (𝑧 bday 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥)))
6463impd 414 . . . . . . . . 9 (((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) → ((((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6564rexlimdva 3276 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (∃𝑧 No (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6626, 65syl5bi 245 . . . . . . 7 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6766ralrimiv 3176 . . . . . 6 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ∀𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥)
68 ssint 4878 . . . . . 6 (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ∀𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥)
6967, 68sylibr 237 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
703simp1d 1139 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴 |s 𝐵) ∈ No )
717, 11jca 515 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷)))
72 sneq 4560 . . . . . . . . . . 11 (𝑦 = (𝐴 |s 𝐵) → {𝑦} = {(𝐴 |s 𝐵)})
7372breq2d 5064 . . . . . . . . . 10 (𝑦 = (𝐴 |s 𝐵) → ((𝐴𝐶) <<s {𝑦} ↔ (𝐴𝐶) <<s {(𝐴 |s 𝐵)}))
7472breq1d 5062 . . . . . . . . . 10 (𝑦 = (𝐴 |s 𝐵) → ({𝑦} <<s (𝐵𝐷) ↔ {(𝐴 |s 𝐵)} <<s (𝐵𝐷)))
7573, 74anbi12d 633 . . . . . . . . 9 (𝑦 = (𝐴 |s 𝐵) → (((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷)) ↔ ((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷))))
7675elrab 3666 . . . . . . . 8 ((𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ↔ ((𝐴 |s 𝐵) ∈ No ∧ ((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷))))
7770, 71, 76sylanbrc 586 . . . . . . 7 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})
78 ssrab2 4042 . . . . . . . 8 {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ⊆ No
79 fnfvima 6987 . . . . . . . 8 (( bday Fn No ∧ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ⊆ No ∧ (𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
8028, 78, 79mp3an12 1448 . . . . . . 7 ((𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
8177, 80syl 17 . . . . . 6 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
82 intss1 4877 . . . . . 6 (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) → ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
8381, 82syl 17 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
8469, 83eqssd 3970 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
85 conway 33324 . . . . . 6 ((𝐴𝐶) <<s (𝐵𝐷) → ∃!𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
8616, 85syl 17 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ∃!𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
87 fveqeq2 6670 . . . . . 6 (𝑥 = (𝐴 |s 𝐵) → (( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
8887riota2 7132 . . . . 5 (((𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ∧ ∃!𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) = (𝐴 |s 𝐵)))
8977, 86, 88syl2anc 587 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) = (𝐴 |s 𝐵)))
9084, 89mpbid 235 . . 3 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) = (𝐴 |s 𝐵))
9190eqcomd 2830 . 2 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
9218, 91eqtr4d 2862 1 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝐴 |s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  ∃!wreu 3135  {crab 3137  cun 3917  wss 3919  c0 4276  {csn 4550   cint 4862   class class class wbr 5052  cima 5545   Fn wfn 6338  cfv 6343  crio 7106  (class class class)co 7149   No csur 33207   bday cbday 33209   <<s csslt 33310   |s cscut 33312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-ord 6181  df-on 6182  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1o 8098  df-2o 8099  df-no 33210  df-slt 33211  df-bday 33212  df-sslt 33311  df-scut 33313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator