MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutun12 Structured version   Visualization version   GIF version

Theorem scutun12 27873
Description: Union law for surreal cuts. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
scutun12 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝐴 |s 𝐵))

Proof of Theorem scutun12
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . . 7 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐴 <<s 𝐵)
2 scutcut 27864 . . . . . . 7 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
31, 2syl 17 . . . . . 6 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
43simp2d 1143 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐴 <<s {(𝐴 |s 𝐵)})
5 simp2 1137 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐶 <<s {(𝐴 |s 𝐵)})
6 ssltun1 27871 . . . . 5 ((𝐴 <<s {(𝐴 |s 𝐵)} ∧ 𝐶 <<s {(𝐴 |s 𝐵)}) → (𝐴𝐶) <<s {(𝐴 |s 𝐵)})
74, 5, 6syl2anc 583 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴𝐶) <<s {(𝐴 |s 𝐵)})
83simp3d 1144 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s 𝐵)
9 simp3 1138 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s 𝐷)
10 ssltun2 27872 . . . . 5 (({(𝐴 |s 𝐵)} <<s 𝐵 ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s (𝐵𝐷))
118, 9, 10syl2anc 583 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s (𝐵𝐷))
12 ovex 7481 . . . . . 6 (𝐴 |s 𝐵) ∈ V
1312snnz 4801 . . . . 5 {(𝐴 |s 𝐵)} ≠ ∅
14 sslttr 27870 . . . . 5 (((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷) ∧ {(𝐴 |s 𝐵)} ≠ ∅) → (𝐴𝐶) <<s (𝐵𝐷))
1513, 14mp3an3 1450 . . . 4 (((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷)) → (𝐴𝐶) <<s (𝐵𝐷))
167, 11, 15syl2anc 583 . . 3 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴𝐶) <<s (𝐵𝐷))
17 scutval 27863 . . 3 ((𝐴𝐶) <<s (𝐵𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
1816, 17syl 17 . 2 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
19 vex 3492 . . . . . . . . . 10 𝑥 ∈ V
2019elima 6094 . . . . . . . . 9 (𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ∃𝑧 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}𝑧 bday 𝑥)
21 sneq 4658 . . . . . . . . . . . 12 (𝑦 = 𝑧 → {𝑦} = {𝑧})
2221breq2d 5178 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝐴𝐶) <<s {𝑦} ↔ (𝐴𝐶) <<s {𝑧}))
2321breq1d 5176 . . . . . . . . . . 11 (𝑦 = 𝑧 → ({𝑦} <<s (𝐵𝐷) ↔ {𝑧} <<s (𝐵𝐷)))
2422, 23anbi12d 631 . . . . . . . . . 10 (𝑦 = 𝑧 → (((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷)) ↔ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))))
2524rexrab 3718 . . . . . . . . 9 (∃𝑧 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}𝑧 bday 𝑥 ↔ ∃𝑧 No (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥))
2620, 25bitri 275 . . . . . . . 8 (𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ∃𝑧 No (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥))
27 simplr 768 . . . . . . . . . . . . 13 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝑧 No )
28 bdayfn 27836 . . . . . . . . . . . . . 14 bday Fn No
29 fnbrfvb 6973 . . . . . . . . . . . . . 14 (( bday Fn No 𝑧 No ) → (( bday 𝑧) = 𝑥𝑧 bday 𝑥))
3028, 29mpan 689 . . . . . . . . . . . . 13 (𝑧 No → (( bday 𝑧) = 𝑥𝑧 bday 𝑥))
3127, 30syl 17 . . . . . . . . . . . 12 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (( bday 𝑧) = 𝑥𝑧 bday 𝑥))
32 simpll1 1212 . . . . . . . . . . . . . . 15 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝐴 <<s 𝐵)
33 scutbday 27867 . . . . . . . . . . . . . . 15 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3432, 33syl 17 . . . . . . . . . . . . . 14 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
35 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (𝐴𝐶) <<s {𝑧})
36 ssun1 4201 . . . . . . . . . . . . . . . . . . . 20 𝐴 ⊆ (𝐴𝐶)
37 sssslt1 27858 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐶) <<s {𝑧} ∧ 𝐴 ⊆ (𝐴𝐶)) → 𝐴 <<s {𝑧})
3836, 37mpan2 690 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐶) <<s {𝑧} → 𝐴 <<s {𝑧})
3935, 38syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝐴 <<s {𝑧})
40 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → {𝑧} <<s (𝐵𝐷))
41 ssun1 4201 . . . . . . . . . . . . . . . . . . . 20 𝐵 ⊆ (𝐵𝐷)
42 sssslt2 27859 . . . . . . . . . . . . . . . . . . . 20 (({𝑧} <<s (𝐵𝐷) ∧ 𝐵 ⊆ (𝐵𝐷)) → {𝑧} <<s 𝐵)
4341, 42mpan2 690 . . . . . . . . . . . . . . . . . . 19 ({𝑧} <<s (𝐵𝐷) → {𝑧} <<s 𝐵)
4440, 43syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → {𝑧} <<s 𝐵)
4539, 44jca 511 . . . . . . . . . . . . . . . . 17 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵))
4621breq2d 5178 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑧}))
4721breq1d 5176 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → ({𝑦} <<s 𝐵 ↔ {𝑧} <<s 𝐵))
4846, 47anbi12d 631 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵)))
4948elrab 3708 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ (𝑧 No ∧ (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵)))
5027, 45, 49sylanbrc 582 . . . . . . . . . . . . . . . 16 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
51 ssrab2 4103 . . . . . . . . . . . . . . . . 17 {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No
52 fnfvima 7270 . . . . . . . . . . . . . . . . 17 (( bday Fn No ∧ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No 𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
5328, 51, 52mp3an12 1451 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} → ( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
5450, 53syl 17 . . . . . . . . . . . . . . 15 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
55 intss1 4987 . . . . . . . . . . . . . . 15 (( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑧))
5654, 55syl 17 . . . . . . . . . . . . . 14 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑧))
5734, 56eqsstrd 4047 . . . . . . . . . . . . 13 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧))
58 sseq2 4035 . . . . . . . . . . . . . . 15 (( bday 𝑧) = 𝑥 → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧) ↔ ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
5958biimpd 229 . . . . . . . . . . . . . 14 (( bday 𝑧) = 𝑥 → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6059com12 32 . . . . . . . . . . . . 13 (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧) → (( bday 𝑧) = 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6157, 60syl 17 . . . . . . . . . . . 12 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (( bday 𝑧) = 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6231, 61sylbird 260 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (𝑧 bday 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6362ex 412 . . . . . . . . . 10 (((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) → (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) → (𝑧 bday 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥)))
6463impd 410 . . . . . . . . 9 (((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) → ((((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6564rexlimdva 3161 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (∃𝑧 No (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6626, 65biimtrid 242 . . . . . . 7 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6766ralrimiv 3151 . . . . . 6 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ∀𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥)
68 ssint 4988 . . . . . 6 (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ∀𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥)
6967, 68sylibr 234 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
703simp1d 1142 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴 |s 𝐵) ∈ No )
717, 11jca 511 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷)))
72 sneq 4658 . . . . . . . . . . 11 (𝑦 = (𝐴 |s 𝐵) → {𝑦} = {(𝐴 |s 𝐵)})
7372breq2d 5178 . . . . . . . . . 10 (𝑦 = (𝐴 |s 𝐵) → ((𝐴𝐶) <<s {𝑦} ↔ (𝐴𝐶) <<s {(𝐴 |s 𝐵)}))
7472breq1d 5176 . . . . . . . . . 10 (𝑦 = (𝐴 |s 𝐵) → ({𝑦} <<s (𝐵𝐷) ↔ {(𝐴 |s 𝐵)} <<s (𝐵𝐷)))
7573, 74anbi12d 631 . . . . . . . . 9 (𝑦 = (𝐴 |s 𝐵) → (((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷)) ↔ ((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷))))
7675elrab 3708 . . . . . . . 8 ((𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ↔ ((𝐴 |s 𝐵) ∈ No ∧ ((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷))))
7770, 71, 76sylanbrc 582 . . . . . . 7 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})
78 ssrab2 4103 . . . . . . . 8 {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ⊆ No
79 fnfvima 7270 . . . . . . . 8 (( bday Fn No ∧ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ⊆ No ∧ (𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
8028, 78, 79mp3an12 1451 . . . . . . 7 ((𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
8177, 80syl 17 . . . . . 6 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
82 intss1 4987 . . . . . 6 (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) → ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
8381, 82syl 17 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
8469, 83eqssd 4026 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
85 conway 27862 . . . . . 6 ((𝐴𝐶) <<s (𝐵𝐷) → ∃!𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
8616, 85syl 17 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ∃!𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
87 fveqeq2 6929 . . . . . 6 (𝑥 = (𝐴 |s 𝐵) → (( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
8887riota2 7430 . . . . 5 (((𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ∧ ∃!𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) = (𝐴 |s 𝐵)))
8977, 86, 88syl2anc 583 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) = (𝐴 |s 𝐵)))
9084, 89mpbid 232 . . 3 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) = (𝐴 |s 𝐵))
9190eqcomd 2746 . 2 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
9218, 91eqtr4d 2783 1 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝐴 |s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  ∃!wreu 3386  {crab 3443  cun 3974  wss 3976  c0 4352  {csn 4648   cint 4970   class class class wbr 5166  cima 5703   Fn wfn 6568  cfv 6573  crio 7403  (class class class)co 7448   No csur 27702   bday cbday 27704   <<s csslt 27843   |s cscut 27845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator