MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutun12 Structured version   Visualization version   GIF version

Theorem scutun12 27739
Description: Union law for surreal cuts. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
scutun12 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝐴 |s 𝐵))

Proof of Theorem scutun12
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . . 7 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐴 <<s 𝐵)
2 scutcut 27730 . . . . . . 7 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
31, 2syl 17 . . . . . 6 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
43simp2d 1143 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐴 <<s {(𝐴 |s 𝐵)})
5 simp2 1137 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐶 <<s {(𝐴 |s 𝐵)})
6 ssltun1 27737 . . . . 5 ((𝐴 <<s {(𝐴 |s 𝐵)} ∧ 𝐶 <<s {(𝐴 |s 𝐵)}) → (𝐴𝐶) <<s {(𝐴 |s 𝐵)})
74, 5, 6syl2anc 584 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴𝐶) <<s {(𝐴 |s 𝐵)})
83simp3d 1144 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s 𝐵)
9 simp3 1138 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s 𝐷)
10 ssltun2 27738 . . . . 5 (({(𝐴 |s 𝐵)} <<s 𝐵 ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s (𝐵𝐷))
118, 9, 10syl2anc 584 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s (𝐵𝐷))
12 ovex 7386 . . . . . 6 (𝐴 |s 𝐵) ∈ V
1312snnz 4730 . . . . 5 {(𝐴 |s 𝐵)} ≠ ∅
14 sslttr 27736 . . . . 5 (((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷) ∧ {(𝐴 |s 𝐵)} ≠ ∅) → (𝐴𝐶) <<s (𝐵𝐷))
1513, 14mp3an3 1452 . . . 4 (((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷)) → (𝐴𝐶) <<s (𝐵𝐷))
167, 11, 15syl2anc 584 . . 3 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴𝐶) <<s (𝐵𝐷))
17 scutval 27729 . . 3 ((𝐴𝐶) <<s (𝐵𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
1816, 17syl 17 . 2 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
19 vex 3442 . . . . . . . . . 10 𝑥 ∈ V
2019elima 6020 . . . . . . . . 9 (𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ∃𝑧 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}𝑧 bday 𝑥)
21 sneq 4589 . . . . . . . . . . . 12 (𝑦 = 𝑧 → {𝑦} = {𝑧})
2221breq2d 5107 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝐴𝐶) <<s {𝑦} ↔ (𝐴𝐶) <<s {𝑧}))
2321breq1d 5105 . . . . . . . . . . 11 (𝑦 = 𝑧 → ({𝑦} <<s (𝐵𝐷) ↔ {𝑧} <<s (𝐵𝐷)))
2422, 23anbi12d 632 . . . . . . . . . 10 (𝑦 = 𝑧 → (((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷)) ↔ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))))
2524rexrab 3658 . . . . . . . . 9 (∃𝑧 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}𝑧 bday 𝑥 ↔ ∃𝑧 No (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥))
2620, 25bitri 275 . . . . . . . 8 (𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ∃𝑧 No (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥))
27 simplr 768 . . . . . . . . . . . . 13 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝑧 No )
28 bdayfn 27701 . . . . . . . . . . . . . 14 bday Fn No
29 fnbrfvb 6877 . . . . . . . . . . . . . 14 (( bday Fn No 𝑧 No ) → (( bday 𝑧) = 𝑥𝑧 bday 𝑥))
3028, 29mpan 690 . . . . . . . . . . . . 13 (𝑧 No → (( bday 𝑧) = 𝑥𝑧 bday 𝑥))
3127, 30syl 17 . . . . . . . . . . . 12 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (( bday 𝑧) = 𝑥𝑧 bday 𝑥))
32 simpll1 1213 . . . . . . . . . . . . . . 15 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝐴 <<s 𝐵)
33 scutbday 27733 . . . . . . . . . . . . . . 15 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3432, 33syl 17 . . . . . . . . . . . . . 14 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
35 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (𝐴𝐶) <<s {𝑧})
36 ssun1 4131 . . . . . . . . . . . . . . . . . . . 20 𝐴 ⊆ (𝐴𝐶)
37 sssslt1 27724 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐶) <<s {𝑧} ∧ 𝐴 ⊆ (𝐴𝐶)) → 𝐴 <<s {𝑧})
3836, 37mpan2 691 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐶) <<s {𝑧} → 𝐴 <<s {𝑧})
3935, 38syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝐴 <<s {𝑧})
40 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → {𝑧} <<s (𝐵𝐷))
41 ssun1 4131 . . . . . . . . . . . . . . . . . . . 20 𝐵 ⊆ (𝐵𝐷)
42 sssslt2 27725 . . . . . . . . . . . . . . . . . . . 20 (({𝑧} <<s (𝐵𝐷) ∧ 𝐵 ⊆ (𝐵𝐷)) → {𝑧} <<s 𝐵)
4341, 42mpan2 691 . . . . . . . . . . . . . . . . . . 19 ({𝑧} <<s (𝐵𝐷) → {𝑧} <<s 𝐵)
4440, 43syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → {𝑧} <<s 𝐵)
4539, 44jca 511 . . . . . . . . . . . . . . . . 17 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵))
4621breq2d 5107 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑧}))
4721breq1d 5105 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → ({𝑦} <<s 𝐵 ↔ {𝑧} <<s 𝐵))
4846, 47anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵)))
4948elrab 3650 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ (𝑧 No ∧ (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵)))
5027, 45, 49sylanbrc 583 . . . . . . . . . . . . . . . 16 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
51 ssrab2 4033 . . . . . . . . . . . . . . . . 17 {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No
52 fnfvima 7173 . . . . . . . . . . . . . . . . 17 (( bday Fn No ∧ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No 𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
5328, 51, 52mp3an12 1453 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} → ( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
5450, 53syl 17 . . . . . . . . . . . . . . 15 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
55 intss1 4916 . . . . . . . . . . . . . . 15 (( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑧))
5654, 55syl 17 . . . . . . . . . . . . . 14 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑧))
5734, 56eqsstrd 3972 . . . . . . . . . . . . 13 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧))
58 sseq2 3964 . . . . . . . . . . . . . . 15 (( bday 𝑧) = 𝑥 → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧) ↔ ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
5958biimpd 229 . . . . . . . . . . . . . 14 (( bday 𝑧) = 𝑥 → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6059com12 32 . . . . . . . . . . . . 13 (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧) → (( bday 𝑧) = 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6157, 60syl 17 . . . . . . . . . . . 12 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (( bday 𝑧) = 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6231, 61sylbird 260 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (𝑧 bday 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6362ex 412 . . . . . . . . . 10 (((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) → (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) → (𝑧 bday 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥)))
6463impd 410 . . . . . . . . 9 (((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) → ((((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6564rexlimdva 3130 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (∃𝑧 No (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6626, 65biimtrid 242 . . . . . . 7 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6766ralrimiv 3120 . . . . . 6 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ∀𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥)
68 ssint 4917 . . . . . 6 (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ∀𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥)
6967, 68sylibr 234 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
703simp1d 1142 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴 |s 𝐵) ∈ No )
717, 11jca 511 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷)))
72 sneq 4589 . . . . . . . . . . 11 (𝑦 = (𝐴 |s 𝐵) → {𝑦} = {(𝐴 |s 𝐵)})
7372breq2d 5107 . . . . . . . . . 10 (𝑦 = (𝐴 |s 𝐵) → ((𝐴𝐶) <<s {𝑦} ↔ (𝐴𝐶) <<s {(𝐴 |s 𝐵)}))
7472breq1d 5105 . . . . . . . . . 10 (𝑦 = (𝐴 |s 𝐵) → ({𝑦} <<s (𝐵𝐷) ↔ {(𝐴 |s 𝐵)} <<s (𝐵𝐷)))
7573, 74anbi12d 632 . . . . . . . . 9 (𝑦 = (𝐴 |s 𝐵) → (((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷)) ↔ ((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷))))
7675elrab 3650 . . . . . . . 8 ((𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ↔ ((𝐴 |s 𝐵) ∈ No ∧ ((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷))))
7770, 71, 76sylanbrc 583 . . . . . . 7 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})
78 ssrab2 4033 . . . . . . . 8 {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ⊆ No
79 fnfvima 7173 . . . . . . . 8 (( bday Fn No ∧ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ⊆ No ∧ (𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
8028, 78, 79mp3an12 1453 . . . . . . 7 ((𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
8177, 80syl 17 . . . . . 6 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
82 intss1 4916 . . . . . 6 (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) → ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
8381, 82syl 17 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
8469, 83eqssd 3955 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
85 conway 27728 . . . . . 6 ((𝐴𝐶) <<s (𝐵𝐷) → ∃!𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
8616, 85syl 17 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ∃!𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
87 fveqeq2 6835 . . . . . 6 (𝑥 = (𝐴 |s 𝐵) → (( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
8887riota2 7335 . . . . 5 (((𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ∧ ∃!𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) = (𝐴 |s 𝐵)))
8977, 86, 88syl2anc 584 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) = (𝐴 |s 𝐵)))
9084, 89mpbid 232 . . 3 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) = (𝐴 |s 𝐵))
9190eqcomd 2735 . 2 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
9218, 91eqtr4d 2767 1 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝐴 |s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3343  {crab 3396  cun 3903  wss 3905  c0 4286  {csn 4579   cint 4899   class class class wbr 5095  cima 5626   Fn wfn 6481  cfv 6486  crio 7309  (class class class)co 7353   No csur 27567   bday cbday 27569   <<s csslt 27709   |s cscut 27711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1o 8395  df-2o 8396  df-no 27570  df-slt 27571  df-bday 27572  df-sslt 27710  df-scut 27712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator