MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgrprop3 Structured version   Visualization version   GIF version

Theorem subgrprop3 27643
Description: The properties of a subgraph: If 𝑆 is a subgraph of 𝐺, its vertices are also vertices of 𝐺, and its edges are also edges of 𝐺. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
subgrprop3.v 𝑉 = (Vtx‘𝑆)
subgrprop3.a 𝐴 = (Vtx‘𝐺)
subgrprop3.e 𝐸 = (Edg‘𝑆)
subgrprop3.b 𝐵 = (Edg‘𝐺)
Assertion
Ref Expression
subgrprop3 (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐸𝐵))

Proof of Theorem subgrprop3
StepHypRef Expression
1 subgrprop3.v . . . 4 𝑉 = (Vtx‘𝑆)
2 subgrprop3.a . . . 4 𝐴 = (Vtx‘𝐺)
3 eqid 2738 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2738 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 subgrprop3.e . . . 4 𝐸 = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 27641 . . 3 (𝑆 SubGraph 𝐺 → (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ 𝐸 ⊆ 𝒫 𝑉))
7 3simpa 1147 . . 3 ((𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ 𝐸 ⊆ 𝒫 𝑉) → (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)))
86, 7syl 17 . 2 (𝑆 SubGraph 𝐺 → (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)))
9 simprl 768 . . 3 ((𝑆 SubGraph 𝐺 ∧ (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → 𝑉𝐴)
10 rnss 5848 . . . . 5 ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺))
1110ad2antll 726 . . . 4 ((𝑆 SubGraph 𝐺 ∧ (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺))
12 subgrv 27637 . . . . . 6 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
13 edgval 27419 . . . . . . . . 9 (Edg‘𝑆) = ran (iEdg‘𝑆)
1413a1i 11 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (Edg‘𝑆) = ran (iEdg‘𝑆))
155, 14eqtrid 2790 . . . . . . 7 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → 𝐸 = ran (iEdg‘𝑆))
16 subgrprop3.b . . . . . . . 8 𝐵 = (Edg‘𝐺)
17 edgval 27419 . . . . . . . . 9 (Edg‘𝐺) = ran (iEdg‘𝐺)
1817a1i 11 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (Edg‘𝐺) = ran (iEdg‘𝐺))
1916, 18eqtrid 2790 . . . . . . 7 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → 𝐵 = ran (iEdg‘𝐺))
2015, 19sseq12d 3954 . . . . . 6 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝐸𝐵 ↔ ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺)))
2112, 20syl 17 . . . . 5 (𝑆 SubGraph 𝐺 → (𝐸𝐵 ↔ ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺)))
2221adantr 481 . . . 4 ((𝑆 SubGraph 𝐺 ∧ (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → (𝐸𝐵 ↔ ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺)))
2311, 22mpbird 256 . . 3 ((𝑆 SubGraph 𝐺 ∧ (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → 𝐸𝐵)
249, 23jca 512 . 2 ((𝑆 SubGraph 𝐺 ∧ (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → (𝑉𝐴𝐸𝐵))
258, 24mpdan 684 1 (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐸𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  𝒫 cpw 4533   class class class wbr 5074  ran crn 5590  cfv 6433  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417   SubGraph csubgr 27634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-edg 27418  df-subgr 27635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator