MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgrprop3 Structured version   Visualization version   GIF version

Theorem subgrprop3 29293
Description: The properties of a subgraph: If 𝑆 is a subgraph of 𝐺, its vertices are also vertices of 𝐺, and its edges are also edges of 𝐺. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
subgrprop3.v 𝑉 = (Vtx‘𝑆)
subgrprop3.a 𝐴 = (Vtx‘𝐺)
subgrprop3.e 𝐸 = (Edg‘𝑆)
subgrprop3.b 𝐵 = (Edg‘𝐺)
Assertion
Ref Expression
subgrprop3 (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐸𝐵))

Proof of Theorem subgrprop3
StepHypRef Expression
1 subgrprop3.v . . . 4 𝑉 = (Vtx‘𝑆)
2 subgrprop3.a . . . 4 𝐴 = (Vtx‘𝐺)
3 eqid 2737 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2737 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 subgrprop3.e . . . 4 𝐸 = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 29291 . . 3 (𝑆 SubGraph 𝐺 → (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ 𝐸 ⊆ 𝒫 𝑉))
7 3simpa 1149 . . 3 ((𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ 𝐸 ⊆ 𝒫 𝑉) → (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)))
86, 7syl 17 . 2 (𝑆 SubGraph 𝐺 → (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)))
9 simprl 771 . . 3 ((𝑆 SubGraph 𝐺 ∧ (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → 𝑉𝐴)
10 rnss 5950 . . . . 5 ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺))
1110ad2antll 729 . . . 4 ((𝑆 SubGraph 𝐺 ∧ (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺))
12 subgrv 29287 . . . . . 6 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
13 edgval 29066 . . . . . . . . 9 (Edg‘𝑆) = ran (iEdg‘𝑆)
1413a1i 11 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (Edg‘𝑆) = ran (iEdg‘𝑆))
155, 14eqtrid 2789 . . . . . . 7 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → 𝐸 = ran (iEdg‘𝑆))
16 subgrprop3.b . . . . . . . 8 𝐵 = (Edg‘𝐺)
17 edgval 29066 . . . . . . . . 9 (Edg‘𝐺) = ran (iEdg‘𝐺)
1817a1i 11 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (Edg‘𝐺) = ran (iEdg‘𝐺))
1916, 18eqtrid 2789 . . . . . . 7 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → 𝐵 = ran (iEdg‘𝐺))
2015, 19sseq12d 4017 . . . . . 6 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝐸𝐵 ↔ ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺)))
2112, 20syl 17 . . . . 5 (𝑆 SubGraph 𝐺 → (𝐸𝐵 ↔ ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺)))
2221adantr 480 . . . 4 ((𝑆 SubGraph 𝐺 ∧ (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → (𝐸𝐵 ↔ ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺)))
2311, 22mpbird 257 . . 3 ((𝑆 SubGraph 𝐺 ∧ (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → 𝐸𝐵)
249, 23jca 511 . 2 ((𝑆 SubGraph 𝐺 ∧ (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → (𝑉𝐴𝐸𝐵))
258, 24mpdan 687 1 (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐸𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  𝒫 cpw 4600   class class class wbr 5143  ran crn 5686  cfv 6561  Vtxcvtx 29013  iEdgciedg 29014  Edgcedg 29064   SubGraph csubgr 29284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-iota 6514  df-fun 6563  df-fv 6569  df-edg 29065  df-subgr 29285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator