Proof of Theorem subgrprop3
Step | Hyp | Ref
| Expression |
1 | | subgrprop3.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝑆) |
2 | | subgrprop3.a |
. . . 4
⊢ 𝐴 = (Vtx‘𝐺) |
3 | | eqid 2738 |
. . . 4
⊢
(iEdg‘𝑆) =
(iEdg‘𝑆) |
4 | | eqid 2738 |
. . . 4
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
5 | | subgrprop3.e |
. . . 4
⊢ 𝐸 = (Edg‘𝑆) |
6 | 1, 2, 3, 4, 5 | subgrprop2 27641 |
. . 3
⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ 𝐸 ⊆ 𝒫 𝑉)) |
7 | | 3simpa 1147 |
. . 3
⊢ ((𝑉 ⊆ 𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ 𝐸 ⊆ 𝒫 𝑉) → (𝑉 ⊆ 𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) |
8 | 6, 7 | syl 17 |
. 2
⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) |
9 | | simprl 768 |
. . 3
⊢ ((𝑆 SubGraph 𝐺 ∧ (𝑉 ⊆ 𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → 𝑉 ⊆ 𝐴) |
10 | | rnss 5848 |
. . . . 5
⊢
((iEdg‘𝑆)
⊆ (iEdg‘𝐺)
→ ran (iEdg‘𝑆)
⊆ ran (iEdg‘𝐺)) |
11 | 10 | ad2antll 726 |
. . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ (𝑉 ⊆ 𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺)) |
12 | | subgrv 27637 |
. . . . . 6
⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
13 | | edgval 27419 |
. . . . . . . . 9
⊢
(Edg‘𝑆) = ran
(iEdg‘𝑆) |
14 | 13 | a1i 11 |
. . . . . . . 8
⊢ ((𝑆 ∈ V ∧ 𝐺 ∈ V) →
(Edg‘𝑆) = ran
(iEdg‘𝑆)) |
15 | 5, 14 | eqtrid 2790 |
. . . . . . 7
⊢ ((𝑆 ∈ V ∧ 𝐺 ∈ V) → 𝐸 = ran (iEdg‘𝑆)) |
16 | | subgrprop3.b |
. . . . . . . 8
⊢ 𝐵 = (Edg‘𝐺) |
17 | | edgval 27419 |
. . . . . . . . 9
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
18 | 17 | a1i 11 |
. . . . . . . 8
⊢ ((𝑆 ∈ V ∧ 𝐺 ∈ V) →
(Edg‘𝐺) = ran
(iEdg‘𝐺)) |
19 | 16, 18 | eqtrid 2790 |
. . . . . . 7
⊢ ((𝑆 ∈ V ∧ 𝐺 ∈ V) → 𝐵 = ran (iEdg‘𝐺)) |
20 | 15, 19 | sseq12d 3954 |
. . . . . 6
⊢ ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝐸 ⊆ 𝐵 ↔ ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺))) |
21 | 12, 20 | syl 17 |
. . . . 5
⊢ (𝑆 SubGraph 𝐺 → (𝐸 ⊆ 𝐵 ↔ ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺))) |
22 | 21 | adantr 481 |
. . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ (𝑉 ⊆ 𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → (𝐸 ⊆ 𝐵 ↔ ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺))) |
23 | 11, 22 | mpbird 256 |
. . 3
⊢ ((𝑆 SubGraph 𝐺 ∧ (𝑉 ⊆ 𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → 𝐸 ⊆ 𝐵) |
24 | 9, 23 | jca 512 |
. 2
⊢ ((𝑆 SubGraph 𝐺 ∧ (𝑉 ⊆ 𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → (𝑉 ⊆ 𝐴 ∧ 𝐸 ⊆ 𝐵)) |
25 | 8, 24 | mpdan 684 |
1
⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐸 ⊆ 𝐵)) |