MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgrprop3 Structured version   Visualization version   GIF version

Theorem subgrprop3 27336
Description: The properties of a subgraph: If 𝑆 is a subgraph of 𝐺, its vertices are also vertices of 𝐺, and its edges are also edges of 𝐺. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
subgrprop3.v 𝑉 = (Vtx‘𝑆)
subgrprop3.a 𝐴 = (Vtx‘𝐺)
subgrprop3.e 𝐸 = (Edg‘𝑆)
subgrprop3.b 𝐵 = (Edg‘𝐺)
Assertion
Ref Expression
subgrprop3 (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐸𝐵))

Proof of Theorem subgrprop3
StepHypRef Expression
1 subgrprop3.v . . . 4 𝑉 = (Vtx‘𝑆)
2 subgrprop3.a . . . 4 𝐴 = (Vtx‘𝐺)
3 eqid 2734 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2734 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 subgrprop3.e . . . 4 𝐸 = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 27334 . . 3 (𝑆 SubGraph 𝐺 → (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ 𝐸 ⊆ 𝒫 𝑉))
7 3simpa 1150 . . 3 ((𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ 𝐸 ⊆ 𝒫 𝑉) → (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)))
86, 7syl 17 . 2 (𝑆 SubGraph 𝐺 → (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)))
9 simprl 771 . . 3 ((𝑆 SubGraph 𝐺 ∧ (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → 𝑉𝐴)
10 rnss 5797 . . . . 5 ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺))
1110ad2antll 729 . . . 4 ((𝑆 SubGraph 𝐺 ∧ (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺))
12 subgrv 27330 . . . . . 6 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
13 edgval 27112 . . . . . . . . 9 (Edg‘𝑆) = ran (iEdg‘𝑆)
1413a1i 11 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (Edg‘𝑆) = ran (iEdg‘𝑆))
155, 14syl5eq 2786 . . . . . . 7 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → 𝐸 = ran (iEdg‘𝑆))
16 subgrprop3.b . . . . . . . 8 𝐵 = (Edg‘𝐺)
17 edgval 27112 . . . . . . . . 9 (Edg‘𝐺) = ran (iEdg‘𝐺)
1817a1i 11 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (Edg‘𝐺) = ran (iEdg‘𝐺))
1916, 18syl5eq 2786 . . . . . . 7 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → 𝐵 = ran (iEdg‘𝐺))
2015, 19sseq12d 3924 . . . . . 6 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝐸𝐵 ↔ ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺)))
2112, 20syl 17 . . . . 5 (𝑆 SubGraph 𝐺 → (𝐸𝐵 ↔ ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺)))
2221adantr 484 . . . 4 ((𝑆 SubGraph 𝐺 ∧ (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → (𝐸𝐵 ↔ ran (iEdg‘𝑆) ⊆ ran (iEdg‘𝐺)))
2311, 22mpbird 260 . . 3 ((𝑆 SubGraph 𝐺 ∧ (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → 𝐸𝐵)
249, 23jca 515 . 2 ((𝑆 SubGraph 𝐺 ∧ (𝑉𝐴 ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) → (𝑉𝐴𝐸𝐵))
258, 24mpdan 687 1 (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐸𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  Vcvv 3401  wss 3857  𝒫 cpw 4503   class class class wbr 5043  ran crn 5541  cfv 6369  Vtxcvtx 27059  iEdgciedg 27060  Edgcedg 27110   SubGraph csubgr 27327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-sbc 3688  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-iota 6327  df-fun 6371  df-fv 6377  df-edg 27111  df-subgr 27328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator