| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgrprop | Structured version Visualization version GIF version | ||
| Description: The properties of a subgraph. (Contributed by AV, 19-Nov-2020.) |
| Ref | Expression |
|---|---|
| issubgr.v | ⊢ 𝑉 = (Vtx‘𝑆) |
| issubgr.a | ⊢ 𝐴 = (Vtx‘𝐺) |
| issubgr.i | ⊢ 𝐼 = (iEdg‘𝑆) |
| issubgr.b | ⊢ 𝐵 = (iEdg‘𝐺) |
| issubgr.e | ⊢ 𝐸 = (Edg‘𝑆) |
| Ref | Expression |
|---|---|
| subgrprop | ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgrv 29250 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) | |
| 2 | issubgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝑆) | |
| 3 | issubgr.a | . . . . 5 ⊢ 𝐴 = (Vtx‘𝐺) | |
| 4 | issubgr.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝑆) | |
| 5 | issubgr.b | . . . . 5 ⊢ 𝐵 = (iEdg‘𝐺) | |
| 6 | issubgr.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝑆) | |
| 7 | 2, 3, 4, 5, 6 | issubgr 29251 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |
| 8 | 7 | biimpd 229 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |
| 9 | 8 | ancoms 458 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |
| 10 | 1, 9 | mpcom 38 | 1 ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 𝒫 cpw 4549 class class class wbr 5093 dom cdm 5619 ↾ cres 5621 ‘cfv 6486 Vtxcvtx 28976 iEdgciedg 28977 Edgcedg 29027 SubGraph csubgr 29247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-dm 5629 df-res 5631 df-iota 6442 df-fv 6494 df-subgr 29248 |
| This theorem is referenced by: subgrprop2 29254 subgrwlk 35197 |
| Copyright terms: Public domain | W3C validator |