Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgrprop | Structured version Visualization version GIF version |
Description: The properties of a subgraph. (Contributed by AV, 19-Nov-2020.) |
Ref | Expression |
---|---|
issubgr.v | ⊢ 𝑉 = (Vtx‘𝑆) |
issubgr.a | ⊢ 𝐴 = (Vtx‘𝐺) |
issubgr.i | ⊢ 𝐼 = (iEdg‘𝑆) |
issubgr.b | ⊢ 𝐵 = (iEdg‘𝐺) |
issubgr.e | ⊢ 𝐸 = (Edg‘𝑆) |
Ref | Expression |
---|---|
subgrprop | ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgrv 27637 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) | |
2 | issubgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝑆) | |
3 | issubgr.a | . . . . 5 ⊢ 𝐴 = (Vtx‘𝐺) | |
4 | issubgr.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝑆) | |
5 | issubgr.b | . . . . 5 ⊢ 𝐵 = (iEdg‘𝐺) | |
6 | issubgr.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝑆) | |
7 | 2, 3, 4, 5, 6 | issubgr 27638 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |
8 | 7 | biimpd 228 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |
9 | 8 | ancoms 459 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |
10 | 1, 9 | mpcom 38 | 1 ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 class class class wbr 5074 dom cdm 5589 ↾ cres 5591 ‘cfv 6433 Vtxcvtx 27366 iEdgciedg 27367 Edgcedg 27417 SubGraph csubgr 27634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 df-res 5601 df-iota 6391 df-fv 6441 df-subgr 27635 |
This theorem is referenced by: subgrprop2 27641 subgrwlk 33094 |
Copyright terms: Public domain | W3C validator |