MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgrprop Structured version   Visualization version   GIF version

Theorem subgrprop 29130
Description: The properties of a subgraph. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
issubgr.v 𝑉 = (Vtx‘𝑆)
issubgr.a 𝐴 = (Vtx‘𝐺)
issubgr.i 𝐼 = (iEdg‘𝑆)
issubgr.b 𝐵 = (iEdg‘𝐺)
issubgr.e 𝐸 = (Edg‘𝑆)
Assertion
Ref Expression
subgrprop (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))

Proof of Theorem subgrprop
StepHypRef Expression
1 subgrv 29127 . 2 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
2 issubgr.v . . . . 5 𝑉 = (Vtx‘𝑆)
3 issubgr.a . . . . 5 𝐴 = (Vtx‘𝐺)
4 issubgr.i . . . . 5 𝐼 = (iEdg‘𝑆)
5 issubgr.b . . . . 5 𝐵 = (iEdg‘𝐺)
6 issubgr.e . . . . 5 𝐸 = (Edg‘𝑆)
72, 3, 4, 5, 6issubgr 29128 . . . 4 ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
87biimpd 228 . . 3 ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
98ancoms 457 . 2 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
101, 9mpcom 38 1 (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3463  wss 3939  𝒫 cpw 4598   class class class wbr 5143  dom cdm 5672  cres 5674  cfv 6543  Vtxcvtx 28853  iEdgciedg 28854  Edgcedg 28904   SubGraph csubgr 29124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-xp 5678  df-rel 5679  df-dm 5682  df-res 5684  df-iota 6495  df-fv 6551  df-subgr 29125
This theorem is referenced by:  subgrprop2  29131  subgrwlk  34799
  Copyright terms: Public domain W3C validator