MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgrprop Structured version   Visualization version   GIF version

Theorem subgrprop 29249
Description: The properties of a subgraph. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
issubgr.v 𝑉 = (Vtx‘𝑆)
issubgr.a 𝐴 = (Vtx‘𝐺)
issubgr.i 𝐼 = (iEdg‘𝑆)
issubgr.b 𝐵 = (iEdg‘𝐺)
issubgr.e 𝐸 = (Edg‘𝑆)
Assertion
Ref Expression
subgrprop (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))

Proof of Theorem subgrprop
StepHypRef Expression
1 subgrv 29246 . 2 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
2 issubgr.v . . . . 5 𝑉 = (Vtx‘𝑆)
3 issubgr.a . . . . 5 𝐴 = (Vtx‘𝐺)
4 issubgr.i . . . . 5 𝐼 = (iEdg‘𝑆)
5 issubgr.b . . . . 5 𝐵 = (iEdg‘𝐺)
6 issubgr.e . . . . 5 𝐸 = (Edg‘𝑆)
72, 3, 4, 5, 6issubgr 29247 . . . 4 ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
87biimpd 229 . . 3 ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
98ancoms 458 . 2 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
101, 9mpcom 38 1 (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  𝒫 cpw 4550   class class class wbr 5091  dom cdm 5616  cres 5618  cfv 6481  Vtxcvtx 28972  iEdgciedg 28973  Edgcedg 29023   SubGraph csubgr 29243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-dm 5626  df-res 5628  df-iota 6437  df-fv 6489  df-subgr 29244
This theorem is referenced by:  subgrprop2  29250  subgrwlk  35164
  Copyright terms: Public domain W3C validator