MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgrprop Structured version   Visualization version   GIF version

Theorem subgrprop 29253
Description: The properties of a subgraph. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
issubgr.v 𝑉 = (Vtx‘𝑆)
issubgr.a 𝐴 = (Vtx‘𝐺)
issubgr.i 𝐼 = (iEdg‘𝑆)
issubgr.b 𝐵 = (iEdg‘𝐺)
issubgr.e 𝐸 = (Edg‘𝑆)
Assertion
Ref Expression
subgrprop (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))

Proof of Theorem subgrprop
StepHypRef Expression
1 subgrv 29250 . 2 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
2 issubgr.v . . . . 5 𝑉 = (Vtx‘𝑆)
3 issubgr.a . . . . 5 𝐴 = (Vtx‘𝐺)
4 issubgr.i . . . . 5 𝐼 = (iEdg‘𝑆)
5 issubgr.b . . . . 5 𝐵 = (iEdg‘𝐺)
6 issubgr.e . . . . 5 𝐸 = (Edg‘𝑆)
72, 3, 4, 5, 6issubgr 29251 . . . 4 ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
87biimpd 229 . . 3 ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
98ancoms 458 . 2 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
101, 9mpcom 38 1 (𝑆 SubGraph 𝐺 → (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  wss 3898  𝒫 cpw 4549   class class class wbr 5093  dom cdm 5619  cres 5621  cfv 6486  Vtxcvtx 28976  iEdgciedg 28977  Edgcedg 29027   SubGraph csubgr 29247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-dm 5629  df-res 5631  df-iota 6442  df-fv 6494  df-subgr 29248
This theorem is referenced by:  subgrprop2  29254  subgrwlk  35197
  Copyright terms: Public domain W3C validator