| Step | Hyp | Ref
| Expression |
| 1 | | cnvimass 6069 |
. . . . . . . 8
⊢ (◡(𝐺‘𝐴) “ ℕ) ⊆ dom (𝐺‘𝐴) |
| 2 | | eulerpart.p |
. . . . . . . . . . . . . 14
⊢ 𝑃 = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| 3 | | eulerpart.o |
. . . . . . . . . . . . . 14
⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
| 4 | | eulerpart.d |
. . . . . . . . . . . . . 14
⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
| 5 | | eulerpart.j |
. . . . . . . . . . . . . 14
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
| 6 | | eulerpart.f |
. . . . . . . . . . . . . 14
⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) |
| 7 | | eulerpart.h |
. . . . . . . . . . . . . 14
⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin} |
| 8 | | eulerpart.m |
. . . . . . . . . . . . . 14
⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
| 9 | | eulerpart.r |
. . . . . . . . . . . . . 14
⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 10 | | eulerpart.t |
. . . . . . . . . . . . . 14
⊢ 𝑇 = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
| 11 | | eulerpart.g |
. . . . . . . . . . . . . 14
⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦
((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
| 12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | eulerpartgbij 34404 |
. . . . . . . . . . . . 13
⊢ 𝐺:(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑m ℕ) ∩ 𝑅) |
| 13 | | f1of 6818 |
. . . . . . . . . . . . 13
⊢ (𝐺:(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑m ℕ) ∩ 𝑅) → 𝐺:(𝑇 ∩ 𝑅)⟶(({0, 1} ↑m
ℕ) ∩ 𝑅)) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ 𝐺:(𝑇 ∩ 𝑅)⟶(({0, 1} ↑m
ℕ) ∩ 𝑅) |
| 15 | 14 | ffvelcdmi 7073 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝐴) ∈ (({0, 1} ↑m
ℕ) ∩ 𝑅)) |
| 16 | | elin 3942 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝐴) ∈ (({0, 1} ↑m
ℕ) ∩ 𝑅) ↔
((𝐺‘𝐴) ∈ ({0, 1} ↑m ℕ)
∧ (𝐺‘𝐴) ∈ 𝑅)) |
| 17 | 15, 16 | sylib 218 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ((𝐺‘𝐴) ∈ ({0, 1} ↑m ℕ)
∧ (𝐺‘𝐴) ∈ 𝑅)) |
| 18 | 17 | simpld 494 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝐴) ∈ ({0, 1} ↑m
ℕ)) |
| 19 | | elmapi 8863 |
. . . . . . . . 9
⊢ ((𝐺‘𝐴) ∈ ({0, 1} ↑m ℕ)
→ (𝐺‘𝐴):ℕ⟶{0,
1}) |
| 20 | | fdm 6715 |
. . . . . . . . 9
⊢ ((𝐺‘𝐴):ℕ⟶{0, 1} → dom (𝐺‘𝐴) = ℕ) |
| 21 | 18, 19, 20 | 3syl 18 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → dom (𝐺‘𝐴) = ℕ) |
| 22 | 1, 21 | sseqtrid 4001 |
. . . . . . 7
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (◡(𝐺‘𝐴) “ ℕ) ⊆
ℕ) |
| 23 | 22 | sselda 3958 |
. . . . . 6
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ (◡(𝐺‘𝐴) “ ℕ)) → 𝑘 ∈
ℕ) |
| 24 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | eulerpartlemgvv 34408 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ ℕ) → ((𝐺‘𝐴)‘𝑘) = if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0)) |
| 25 | 24 | oveq1d 7420 |
. . . . . 6
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ ℕ) → (((𝐺‘𝐴)‘𝑘) · 𝑘) = (if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) · 𝑘)) |
| 26 | 23, 25 | syldan 591 |
. . . . 5
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ (◡(𝐺‘𝐴) “ ℕ)) → (((𝐺‘𝐴)‘𝑘) · 𝑘) = (if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) · 𝑘)) |
| 27 | 26 | sumeq2dv 15718 |
. . . 4
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → Σ𝑘 ∈ (◡(𝐺‘𝐴) “ ℕ)(((𝐺‘𝐴)‘𝑘) · 𝑘) = Σ𝑘 ∈ (◡(𝐺‘𝐴) “ ℕ)(if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) · 𝑘)) |
| 28 | | eqeq2 2747 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑘 → (((2↑𝑛) · 𝑡) = 𝑚 ↔ ((2↑𝑛) · 𝑡) = 𝑘)) |
| 29 | 28 | 2rexbidv 3206 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑘 → (∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚 ↔ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘)) |
| 30 | 29 | elrab 3671 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} ↔ (𝑘 ∈ ℕ ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘)) |
| 31 | 30 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘) |
| 32 | 31 | iftrued 4508 |
. . . . . . . . 9
⊢ (𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} → if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) = 1) |
| 33 | 32 | oveq1d 7420 |
. . . . . . . 8
⊢ (𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} → (if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) · 𝑘) = (1 · 𝑘)) |
| 34 | | elrabi 3666 |
. . . . . . . . . 10
⊢ (𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} → 𝑘 ∈ ℕ) |
| 35 | 34 | nncnd 12256 |
. . . . . . . . 9
⊢ (𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} → 𝑘 ∈ ℂ) |
| 36 | 35 | mullidd 11253 |
. . . . . . . 8
⊢ (𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} → (1 · 𝑘) = 𝑘) |
| 37 | 33, 36 | eqtrd 2770 |
. . . . . . 7
⊢ (𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} → (if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) · 𝑘) = 𝑘) |
| 38 | 37 | sumeq2i 15714 |
. . . . . 6
⊢
Σ𝑘 ∈
{𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} (if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) · 𝑘) = Σ𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}𝑘 |
| 39 | | id 22 |
. . . . . . 7
⊢ (𝑘 = ((2↑(2nd
‘𝑤)) ·
(1st ‘𝑤))
→ 𝑘 =
((2↑(2nd ‘𝑤)) · (1st ‘𝑤))) |
| 40 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | eulerpartlemgf 34411 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (◡(𝐺‘𝐴) “ ℕ) ∈
Fin) |
| 41 | 34 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → 𝑘 ∈ ℕ) |
| 42 | 41, 24 | syldan 591 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → ((𝐺‘𝐴)‘𝑘) = if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0)) |
| 43 | 31 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘) |
| 44 | 43 | iftrued 4508 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) = 1) |
| 45 | 42, 44 | eqtrd 2770 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → ((𝐺‘𝐴)‘𝑘) = 1) |
| 46 | | 1nn 12251 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℕ |
| 47 | 45, 46 | eqeltrdi 2842 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → ((𝐺‘𝐴)‘𝑘) ∈ ℕ) |
| 48 | | ffn 6706 |
. . . . . . . . . . . . . 14
⊢ ((𝐺‘𝐴):ℕ⟶{0, 1} → (𝐺‘𝐴) Fn ℕ) |
| 49 | | elpreima 7048 |
. . . . . . . . . . . . . 14
⊢ ((𝐺‘𝐴) Fn ℕ → (𝑘 ∈ (◡(𝐺‘𝐴) “ ℕ) ↔ (𝑘 ∈ ℕ ∧ ((𝐺‘𝐴)‘𝑘) ∈ ℕ))) |
| 50 | 18, 19, 48, 49 | 4syl 19 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑘 ∈ (◡(𝐺‘𝐴) “ ℕ) ↔ (𝑘 ∈ ℕ ∧ ((𝐺‘𝐴)‘𝑘) ∈ ℕ))) |
| 51 | 50 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → (𝑘 ∈ (◡(𝐺‘𝐴) “ ℕ) ↔ (𝑘 ∈ ℕ ∧ ((𝐺‘𝐴)‘𝑘) ∈ ℕ))) |
| 52 | 41, 47, 51 | mpbir2and 713 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → 𝑘 ∈ (◡(𝐺‘𝐴) “ ℕ)) |
| 53 | 52 | ex 412 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} → 𝑘 ∈ (◡(𝐺‘𝐴) “ ℕ))) |
| 54 | 53 | ssrdv 3964 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} ⊆ (◡(𝐺‘𝐴) “ ℕ)) |
| 55 | | ssfi 9187 |
. . . . . . . . 9
⊢ (((◡(𝐺‘𝐴) “ ℕ) ∈ Fin ∧ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} ⊆ (◡(𝐺‘𝐴) “ ℕ)) → {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} ∈ Fin) |
| 56 | 40, 54, 55 | syl2anc 584 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} ∈ Fin) |
| 57 | | cnvexg 7920 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ◡𝐴 ∈ V) |
| 58 | | imaexg 7909 |
. . . . . . . . . . 11
⊢ (◡𝐴 ∈ V → (◡𝐴 “ ℕ) ∈ V) |
| 59 | | inex1g 5289 |
. . . . . . . . . . 11
⊢ ((◡𝐴 “ ℕ) ∈ V → ((◡𝐴 “ ℕ) ∩ 𝐽) ∈ V) |
| 60 | 57, 58, 59 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ((◡𝐴 “ ℕ) ∩ 𝐽) ∈ V) |
| 61 | | vsnex 5404 |
. . . . . . . . . . . 12
⊢ {𝑡} ∈ V |
| 62 | | fvex 6889 |
. . . . . . . . . . . 12
⊢
(bits‘(𝐴‘𝑡)) ∈ V |
| 63 | 61, 62 | xpex 7747 |
. . . . . . . . . . 11
⊢ ({𝑡} × (bits‘(𝐴‘𝑡))) ∈ V |
| 64 | 63 | rgenw 3055 |
. . . . . . . . . 10
⊢
∀𝑡 ∈
((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ∈ V |
| 65 | | iunexg 7962 |
. . . . . . . . . 10
⊢ ((((◡𝐴 “ ℕ) ∩ 𝐽) ∈ V ∧ ∀𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ∈ V) → ∪ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ∈ V) |
| 66 | 60, 64, 65 | sylancl 586 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ∈ V) |
| 67 | | eqid 2735 |
. . . . . . . . . 10
⊢ ∪ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) = ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) |
| 68 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 67 | eulerpartlemgh 34410 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐹 ↾ ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡)))):∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡)))–1-1-onto→{𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) |
| 69 | | f1oeng 8985 |
. . . . . . . . 9
⊢
((∪ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ∈ V ∧ (𝐹 ↾ ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡)))):∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡)))–1-1-onto→{𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ≈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) |
| 70 | 66, 68, 69 | syl2anc 584 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ≈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) |
| 71 | | enfii 9200 |
. . . . . . . 8
⊢ (({𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} ∈ Fin ∧ ∪ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ≈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ∈ Fin) |
| 72 | 56, 70, 71 | syl2anc 584 |
. . . . . . 7
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ∈ Fin) |
| 73 | | fvres 6895 |
. . . . . . . . 9
⊢ (𝑤 ∈ ∪ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) → ((𝐹 ↾ ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))))‘𝑤) = (𝐹‘𝑤)) |
| 74 | 73 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑤 ∈ ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡)))) → ((𝐹 ↾ ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))))‘𝑤) = (𝐹‘𝑤)) |
| 75 | | inss2 4213 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝐴 “ ℕ) ∩ 𝐽) ⊆ 𝐽 |
| 76 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)) → 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)) |
| 77 | 75, 76 | sselid 3956 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)) → 𝑡 ∈ 𝐽) |
| 78 | 77 | snssd 4785 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)) → {𝑡} ⊆ 𝐽) |
| 79 | | bitsss 16445 |
. . . . . . . . . . . . 13
⊢
(bits‘(𝐴‘𝑡)) ⊆
ℕ0 |
| 80 | | xpss12 5669 |
. . . . . . . . . . . . 13
⊢ (({𝑡} ⊆ 𝐽 ∧ (bits‘(𝐴‘𝑡)) ⊆ ℕ0) →
({𝑡} ×
(bits‘(𝐴‘𝑡))) ⊆ (𝐽 ×
ℕ0)) |
| 81 | 78, 79, 80 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)) → ({𝑡} × (bits‘(𝐴‘𝑡))) ⊆ (𝐽 ×
ℕ0)) |
| 82 | 81 | ralrimiva 3132 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ∀𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ⊆ (𝐽 ×
ℕ0)) |
| 83 | | iunss 5021 |
. . . . . . . . . . 11
⊢ (∪ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ⊆ (𝐽 × ℕ0) ↔
∀𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ⊆ (𝐽 ×
ℕ0)) |
| 84 | 82, 83 | sylibr 234 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ⊆ (𝐽 ×
ℕ0)) |
| 85 | 84 | sselda 3958 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑤 ∈ ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡)))) → 𝑤 ∈ (𝐽 ×
ℕ0)) |
| 86 | 5, 6 | oddpwdcv 34387 |
. . . . . . . . 9
⊢ (𝑤 ∈ (𝐽 × ℕ0) → (𝐹‘𝑤) = ((2↑(2nd ‘𝑤)) · (1st
‘𝑤))) |
| 87 | 85, 86 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑤 ∈ ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡)))) → (𝐹‘𝑤) = ((2↑(2nd ‘𝑤)) · (1st
‘𝑤))) |
| 88 | 74, 87 | eqtrd 2770 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑤 ∈ ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡)))) → ((𝐹 ↾ ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))))‘𝑤) = ((2↑(2nd ‘𝑤)) · (1st
‘𝑤))) |
| 89 | 41 | nncnd 12256 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → 𝑘 ∈ ℂ) |
| 90 | 39, 72, 68, 88, 89 | fsumf1o 15739 |
. . . . . 6
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → Σ𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}𝑘 = Σ𝑤 ∈ ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡)))((2↑(2nd ‘𝑤)) · (1st
‘𝑤))) |
| 91 | 38, 90 | eqtrid 2782 |
. . . . 5
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → Σ𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} (if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) · 𝑘) = Σ𝑤 ∈ ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡)))((2↑(2nd ‘𝑤)) · (1st
‘𝑤))) |
| 92 | | ax-1cn 11187 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
| 93 | | 0cn 11227 |
. . . . . . . . 9
⊢ 0 ∈
ℂ |
| 94 | 92, 93 | ifcli 4548 |
. . . . . . . 8
⊢
if(∃𝑡 ∈
ℕ ∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) ∈ ℂ |
| 95 | 94 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) ∈ ℂ) |
| 96 | | ssrab2 4055 |
. . . . . . . . 9
⊢ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} ⊆ ℕ |
| 97 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) |
| 98 | 96, 97 | sselid 3956 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → 𝑘 ∈ ℕ) |
| 99 | 98 | nncnd 12256 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → 𝑘 ∈ ℂ) |
| 100 | 95, 99 | mulcld 11255 |
. . . . . 6
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) → (if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) · 𝑘) ∈ ℂ) |
| 101 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ ((◡(𝐺‘𝐴) “ ℕ) ∖ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚})) → 𝑘 ∈ ((◡(𝐺‘𝐴) “ ℕ) ∖ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚})) |
| 102 | 101 | eldifbd 3939 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ ((◡(𝐺‘𝐴) “ ℕ) ∖ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚})) → ¬ 𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) |
| 103 | 22 | ssdifssd 4122 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ((◡(𝐺‘𝐴) “ ℕ) ∖ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) ⊆ ℕ) |
| 104 | 103 | sselda 3958 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ ((◡(𝐺‘𝐴) “ ℕ) ∖ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚})) → 𝑘 ∈ ℕ) |
| 105 | 30 | notbii 320 |
. . . . . . . . . . 11
⊢ (¬
𝑘 ∈ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} ↔ ¬ (𝑘 ∈ ℕ ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘)) |
| 106 | | imnan 399 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ → ¬
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘) ↔ ¬ (𝑘 ∈ ℕ ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘)) |
| 107 | 105, 106 | sylbb2 238 |
. . . . . . . . . 10
⊢ (¬
𝑘 ∈ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} → (𝑘 ∈ ℕ → ¬ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘)) |
| 108 | 102, 104,
107 | sylc 65 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ ((◡(𝐺‘𝐴) “ ℕ) ∖ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚})) → ¬ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘) |
| 109 | 108 | iffalsed 4511 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ ((◡(𝐺‘𝐴) “ ℕ) ∖ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚})) → if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) = 0) |
| 110 | 109 | oveq1d 7420 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ ((◡(𝐺‘𝐴) “ ℕ) ∖ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚})) → (if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) · 𝑘) = (0 · 𝑘)) |
| 111 | | nnsscn 12245 |
. . . . . . . . . 10
⊢ ℕ
⊆ ℂ |
| 112 | 103, 111 | sstrdi 3971 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ((◡(𝐺‘𝐴) “ ℕ) ∖ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) ⊆ ℂ) |
| 113 | 112 | sselda 3958 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ ((◡(𝐺‘𝐴) “ ℕ) ∖ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚})) → 𝑘 ∈ ℂ) |
| 114 | 113 | mul02d 11433 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ ((◡(𝐺‘𝐴) “ ℕ) ∖ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚})) → (0 · 𝑘) = 0) |
| 115 | 110, 114 | eqtrd 2770 |
. . . . . 6
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑘 ∈ ((◡(𝐺‘𝐴) “ ℕ) ∖ {𝑚 ∈ ℕ ∣
∃𝑡 ∈ ℕ
∃𝑛 ∈
(bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚})) → (if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) · 𝑘) = 0) |
| 116 | 54, 100, 115, 40 | fsumss 15741 |
. . . . 5
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → Σ𝑘 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚} (if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) · 𝑘) = Σ𝑘 ∈ (◡(𝐺‘𝐴) “ ℕ)(if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) · 𝑘)) |
| 117 | 91, 116 | eqtr3d 2772 |
. . . 4
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → Σ𝑤 ∈ ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡)))((2↑(2nd ‘𝑤)) · (1st
‘𝑤)) = Σ𝑘 ∈ (◡(𝐺‘𝐴) “ ℕ)(if(∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑘, 1, 0) · 𝑘)) |
| 118 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | eulerpartlemt0 34401 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) ↔ (𝐴 ∈ (ℕ0
↑m ℕ) ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
| 119 | 118 | simp1bi 1145 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → 𝐴 ∈ (ℕ0
↑m ℕ)) |
| 120 | | elmapi 8863 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (ℕ0
↑m ℕ) → 𝐴:ℕ⟶ℕ0) |
| 121 | 119, 120 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) |
| 122 | 121 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)) → 𝐴:ℕ⟶ℕ0) |
| 123 | | cnvimass 6069 |
. . . . . . . . . . . . 13
⊢ (◡𝐴 “ ℕ) ⊆ dom 𝐴 |
| 124 | 123, 121 | fssdm 6725 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (◡𝐴 “ ℕ) ⊆
ℕ) |
| 125 | 124 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)) → (◡𝐴 “ ℕ) ⊆
ℕ) |
| 126 | | inss1 4212 |
. . . . . . . . . . . 12
⊢ ((◡𝐴 “ ℕ) ∩ 𝐽) ⊆ (◡𝐴 “ ℕ) |
| 127 | 126, 76 | sselid 3956 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)) → 𝑡 ∈ (◡𝐴 “ ℕ)) |
| 128 | 125, 127 | sseldd 3959 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)) → 𝑡 ∈ ℕ) |
| 129 | 122, 128 | ffvelcdmd 7075 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)) → (𝐴‘𝑡) ∈
ℕ0) |
| 130 | | bitsfi 16456 |
. . . . . . . . 9
⊢ ((𝐴‘𝑡) ∈ ℕ0 →
(bits‘(𝐴‘𝑡)) ∈ Fin) |
| 131 | 129, 130 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)) → (bits‘(𝐴‘𝑡)) ∈ Fin) |
| 132 | 128 | nncnd 12256 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)) → 𝑡 ∈ ℂ) |
| 133 | | 2cnd 12318 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ (𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽) ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) → 2 ∈
ℂ) |
| 134 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ (𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽) ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) → 𝑛 ∈ (bits‘(𝐴‘𝑡))) |
| 135 | 79, 134 | sselid 3956 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ (𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽) ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) → 𝑛 ∈ ℕ0) |
| 136 | 133, 135 | expcld 14164 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ (𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽) ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) → (2↑𝑛) ∈ ℂ) |
| 137 | 136 | anassrs 467 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)) ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡))) → (2↑𝑛) ∈ ℂ) |
| 138 | 131, 132,
137 | fsummulc1 15801 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)) → (Σ𝑛 ∈ (bits‘(𝐴‘𝑡))(2↑𝑛) · 𝑡) = Σ𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡)) |
| 139 | 138 | sumeq2dv 15718 |
. . . . . 6
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → Σ𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)(Σ𝑛 ∈ (bits‘(𝐴‘𝑡))(2↑𝑛) · 𝑡) = Σ𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)Σ𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡)) |
| 140 | | bitsinv1 16461 |
. . . . . . . . 9
⊢ ((𝐴‘𝑡) ∈ ℕ0 →
Σ𝑛 ∈
(bits‘(𝐴‘𝑡))(2↑𝑛) = (𝐴‘𝑡)) |
| 141 | 140 | oveq1d 7420 |
. . . . . . . 8
⊢ ((𝐴‘𝑡) ∈ ℕ0 →
(Σ𝑛 ∈
(bits‘(𝐴‘𝑡))(2↑𝑛) · 𝑡) = ((𝐴‘𝑡) · 𝑡)) |
| 142 | 129, 141 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)) → (Σ𝑛 ∈ (bits‘(𝐴‘𝑡))(2↑𝑛) · 𝑡) = ((𝐴‘𝑡) · 𝑡)) |
| 143 | 142 | sumeq2dv 15718 |
. . . . . 6
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → Σ𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)(Σ𝑛 ∈ (bits‘(𝐴‘𝑡))(2↑𝑛) · 𝑡) = Σ𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)((𝐴‘𝑡) · 𝑡)) |
| 144 | | vex 3463 |
. . . . . . . . . 10
⊢ 𝑡 ∈ V |
| 145 | | vex 3463 |
. . . . . . . . . 10
⊢ 𝑛 ∈ V |
| 146 | 144, 145 | op2ndd 7999 |
. . . . . . . . 9
⊢ (𝑤 = 〈𝑡, 𝑛〉 → (2nd ‘𝑤) = 𝑛) |
| 147 | 146 | oveq2d 7421 |
. . . . . . . 8
⊢ (𝑤 = 〈𝑡, 𝑛〉 → (2↑(2nd
‘𝑤)) = (2↑𝑛)) |
| 148 | 144, 145 | op1std 7998 |
. . . . . . . 8
⊢ (𝑤 = 〈𝑡, 𝑛〉 → (1st ‘𝑤) = 𝑡) |
| 149 | 147, 148 | oveq12d 7423 |
. . . . . . 7
⊢ (𝑤 = 〈𝑡, 𝑛〉 → ((2↑(2nd
‘𝑤)) ·
(1st ‘𝑤))
= ((2↑𝑛) ·
𝑡)) |
| 150 | | inss2 4213 |
. . . . . . . . . 10
⊢ (𝑇 ∩ 𝑅) ⊆ 𝑅 |
| 151 | 150 | sseli 3954 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → 𝐴 ∈ 𝑅) |
| 152 | | cnveq 5853 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐴 → ◡𝑓 = ◡𝐴) |
| 153 | 152 | imaeq1d 6046 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐴 → (◡𝑓 “ ℕ) = (◡𝐴 “ ℕ)) |
| 154 | 153 | eleq1d 2819 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐴 “ ℕ) ∈
Fin)) |
| 155 | 154, 9 | elab2g 3659 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐴 ∈ 𝑅 ↔ (◡𝐴 “ ℕ) ∈
Fin)) |
| 156 | 151, 155 | mpbid 232 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (◡𝐴 “ ℕ) ∈
Fin) |
| 157 | | ssfi 9187 |
. . . . . . . 8
⊢ (((◡𝐴 “ ℕ) ∈ Fin ∧ ((◡𝐴 “ ℕ) ∩ 𝐽) ⊆ (◡𝐴 “ ℕ)) → ((◡𝐴 “ ℕ) ∩ 𝐽) ∈ Fin) |
| 158 | 156, 126,
157 | sylancl 586 |
. . . . . . 7
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ((◡𝐴 “ ℕ) ∩ 𝐽) ∈ Fin) |
| 159 | 132 | adantrr 717 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ (𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽) ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) → 𝑡 ∈ ℂ) |
| 160 | 136, 159 | mulcld 11255 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ (𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽) ∧ 𝑛 ∈ (bits‘(𝐴‘𝑡)))) → ((2↑𝑛) · 𝑡) ∈ ℂ) |
| 161 | 149, 158,
131, 160 | fsum2d 15787 |
. . . . . 6
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → Σ𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)Σ𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = Σ𝑤 ∈ ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡)))((2↑(2nd ‘𝑤)) · (1st
‘𝑤))) |
| 162 | 139, 143,
161 | 3eqtr3d 2778 |
. . . . 5
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → Σ𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)((𝐴‘𝑡) · 𝑡) = Σ𝑤 ∈ ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡)))((2↑(2nd ‘𝑤)) · (1st
‘𝑤))) |
| 163 | | inss1 4212 |
. . . . . . . . 9
⊢ (𝑇 ∩ 𝑅) ⊆ 𝑇 |
| 164 | 163 | sseli 3954 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → 𝐴 ∈ 𝑇) |
| 165 | 153 | sseq1d 3990 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ⊆ 𝐽 ↔ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
| 166 | 165, 10 | elrab2 3674 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑇 ↔ (𝐴 ∈ (ℕ0
↑m ℕ) ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
| 167 | 166 | simprbi 496 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑇 → (◡𝐴 “ ℕ) ⊆ 𝐽) |
| 168 | 164, 167 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (◡𝐴 “ ℕ) ⊆ 𝐽) |
| 169 | | dfss2 3944 |
. . . . . . 7
⊢ ((◡𝐴 “ ℕ) ⊆ 𝐽 ↔ ((◡𝐴 “ ℕ) ∩ 𝐽) = (◡𝐴 “ ℕ)) |
| 170 | 168, 169 | sylib 218 |
. . . . . 6
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ((◡𝐴 “ ℕ) ∩ 𝐽) = (◡𝐴 “ ℕ)) |
| 171 | 170 | sumeq1d 15716 |
. . . . 5
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → Σ𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)((𝐴‘𝑡) · 𝑡) = Σ𝑡 ∈ (◡𝐴 “ ℕ)((𝐴‘𝑡) · 𝑡)) |
| 172 | 162, 171 | eqtr3d 2772 |
. . . 4
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → Σ𝑤 ∈ ∪
𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡)))((2↑(2nd ‘𝑤)) · (1st
‘𝑤)) = Σ𝑡 ∈ (◡𝐴 “ ℕ)((𝐴‘𝑡) · 𝑡)) |
| 173 | 27, 117, 172 | 3eqtr2d 2776 |
. . 3
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → Σ𝑘 ∈ (◡(𝐺‘𝐴) “ ℕ)(((𝐺‘𝐴)‘𝑘) · 𝑘) = Σ𝑡 ∈ (◡𝐴 “ ℕ)((𝐴‘𝑡) · 𝑡)) |
| 174 | | fveq2 6876 |
. . . . 5
⊢ (𝑘 = 𝑡 → (𝐴‘𝑘) = (𝐴‘𝑡)) |
| 175 | | id 22 |
. . . . 5
⊢ (𝑘 = 𝑡 → 𝑘 = 𝑡) |
| 176 | 174, 175 | oveq12d 7423 |
. . . 4
⊢ (𝑘 = 𝑡 → ((𝐴‘𝑘) · 𝑘) = ((𝐴‘𝑡) · 𝑡)) |
| 177 | 176 | cbvsumv 15712 |
. . 3
⊢
Σ𝑘 ∈
(◡𝐴 “ ℕ)((𝐴‘𝑘) · 𝑘) = Σ𝑡 ∈ (◡𝐴 “ ℕ)((𝐴‘𝑡) · 𝑡) |
| 178 | 173, 177 | eqtr4di 2788 |
. 2
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → Σ𝑘 ∈ (◡(𝐺‘𝐴) “ ℕ)(((𝐺‘𝐴)‘𝑘) · 𝑘) = Σ𝑘 ∈ (◡𝐴 “ ℕ)((𝐴‘𝑘) · 𝑘)) |
| 179 | | 0nn0 12516 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
| 180 | | 1nn0 12517 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
| 181 | | prssi 4797 |
. . . . . . . 8
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1}
⊆ ℕ0) |
| 182 | 179, 180,
181 | mp2an 692 |
. . . . . . 7
⊢ {0, 1}
⊆ ℕ0 |
| 183 | | fss 6722 |
. . . . . . 7
⊢ (((𝐺‘𝐴):ℕ⟶{0, 1} ∧ {0, 1} ⊆
ℕ0) → (𝐺‘𝐴):ℕ⟶ℕ0) |
| 184 | 182, 183 | mpan2 691 |
. . . . . 6
⊢ ((𝐺‘𝐴):ℕ⟶{0, 1} → (𝐺‘𝐴):ℕ⟶ℕ0) |
| 185 | | nn0ex 12507 |
. . . . . . . 8
⊢
ℕ0 ∈ V |
| 186 | | nnex 12246 |
. . . . . . . 8
⊢ ℕ
∈ V |
| 187 | 185, 186 | elmap 8885 |
. . . . . . 7
⊢ ((𝐺‘𝐴) ∈ (ℕ0
↑m ℕ) ↔ (𝐺‘𝐴):ℕ⟶ℕ0) |
| 188 | 187 | biimpri 228 |
. . . . . 6
⊢ ((𝐺‘𝐴):ℕ⟶ℕ0 →
(𝐺‘𝐴) ∈ (ℕ0
↑m ℕ)) |
| 189 | 19, 184, 188 | 3syl 18 |
. . . . 5
⊢ ((𝐺‘𝐴) ∈ ({0, 1} ↑m ℕ)
→ (𝐺‘𝐴) ∈ (ℕ0
↑m ℕ)) |
| 190 | 189 | anim1i 615 |
. . . 4
⊢ (((𝐺‘𝐴) ∈ ({0, 1} ↑m ℕ)
∧ (𝐺‘𝐴) ∈ 𝑅) → ((𝐺‘𝐴) ∈ (ℕ0
↑m ℕ) ∧ (𝐺‘𝐴) ∈ 𝑅)) |
| 191 | | elin 3942 |
. . . 4
⊢ ((𝐺‘𝐴) ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ↔ ((𝐺‘𝐴) ∈ (ℕ0
↑m ℕ) ∧ (𝐺‘𝐴) ∈ 𝑅)) |
| 192 | 190, 16, 191 | 3imtr4i 292 |
. . 3
⊢ ((𝐺‘𝐴) ∈ (({0, 1} ↑m
ℕ) ∩ 𝑅) →
(𝐺‘𝐴) ∈ ((ℕ0
↑m ℕ) ∩ 𝑅)) |
| 193 | | eulerpart.s |
. . . 4
⊢ 𝑆 = (𝑓 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
| 194 | 9, 193 | eulerpartlemsv2 34390 |
. . 3
⊢ ((𝐺‘𝐴) ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (𝑆‘(𝐺‘𝐴)) = Σ𝑘 ∈ (◡(𝐺‘𝐴) “ ℕ)(((𝐺‘𝐴)‘𝑘) · 𝑘)) |
| 195 | 15, 192, 194 | 3syl 18 |
. 2
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑆‘(𝐺‘𝐴)) = Σ𝑘 ∈ (◡(𝐺‘𝐴) “ ℕ)(((𝐺‘𝐴)‘𝑘) · 𝑘)) |
| 196 | 119, 151 | elind 4175 |
. . 3
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → 𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅)) |
| 197 | 9, 193 | eulerpartlemsv2 34390 |
. . 3
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (◡𝐴 “ ℕ)((𝐴‘𝑘) · 𝑘)) |
| 198 | 196, 197 | syl 17 |
. 2
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (◡𝐴 “ ℕ)((𝐴‘𝑘) · 𝑘)) |
| 199 | 178, 195,
198 | 3eqtr4d 2780 |
1
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑆‘(𝐺‘𝐴)) = (𝑆‘𝐴)) |