Step | Hyp | Ref
| Expression |
1 | | df-nel 3049 |
. . . . . . 7
⊢ (𝑍 ∉ 𝐴 ↔ ¬ 𝑍 ∈ 𝐴) |
2 | | disjsn 4644 |
. . . . . . 7
⊢ ((𝐴 ∩ {𝑍}) = ∅ ↔ ¬ 𝑍 ∈ 𝐴) |
3 | 1, 2 | sylbb2 237 |
. . . . . 6
⊢ (𝑍 ∉ 𝐴 → (𝐴 ∩ {𝑍}) = ∅) |
4 | 3 | adantl 481 |
. . . . 5
⊢ ((𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) → (𝐴 ∩ {𝑍}) = ∅) |
5 | 4 | 3ad2ant2 1132 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝐴 ∩ {𝑍}) = ∅) |
6 | | eqidd 2739 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝐴 ∪ {𝑍}) = (𝐴 ∪ {𝑍})) |
7 | | snfi 8788 |
. . . . . 6
⊢ {𝑍} ∈ Fin |
8 | | unfi 8917 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝐴 ∪ {𝑍}) ∈ Fin) |
9 | 7, 8 | mpan2 687 |
. . . . 5
⊢ (𝐴 ∈ Fin → (𝐴 ∪ {𝑍}) ∈ Fin) |
10 | 9 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝐴 ∪ {𝑍}) ∈ Fin) |
11 | | rspcsbela 4366 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴 ∪ {𝑍}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) |
12 | 11 | expcom 413 |
. . . . . . 7
⊢
(∀𝑘 ∈
(𝐴 ∪ {𝑍})𝐵 ∈ ℤ → (𝑥 ∈ (𝐴 ∪ {𝑍}) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ)) |
13 | 12 | 3ad2ant3 1133 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴 ∪ {𝑍}) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ)) |
14 | 13 | imp 406 |
. . . . 5
⊢ (((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑍})) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) |
15 | 14 | zcnd 12356 |
. . . 4
⊢ (((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑍})) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ) |
16 | 5, 6, 10, 15 | fsumsplit 15381 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑥 ∈ (𝐴 ∪ {𝑍})⦋𝑥 / 𝑘⦌𝐵 = (Σ𝑥 ∈ 𝐴 ⦋𝑥 / 𝑘⦌𝐵 + Σ𝑥 ∈ {𝑍}⦋𝑥 / 𝑘⦌𝐵)) |
17 | | nfcv 2906 |
. . . 4
⊢
Ⅎ𝑥𝐵 |
18 | | nfcsb1v 3853 |
. . . 4
⊢
Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐵 |
19 | | csbeq1a 3842 |
. . . 4
⊢ (𝑘 = 𝑥 → 𝐵 = ⦋𝑥 / 𝑘⦌𝐵) |
20 | 17, 18, 19 | cbvsumi 15337 |
. . 3
⊢
Σ𝑘 ∈
(𝐴 ∪ {𝑍})𝐵 = Σ𝑥 ∈ (𝐴 ∪ {𝑍})⦋𝑥 / 𝑘⦌𝐵 |
21 | 17, 18, 19 | cbvsumi 15337 |
. . . 4
⊢
Σ𝑘 ∈
𝐴 𝐵 = Σ𝑥 ∈ 𝐴 ⦋𝑥 / 𝑘⦌𝐵 |
22 | 17, 18, 19 | cbvsumi 15337 |
. . . 4
⊢
Σ𝑘 ∈
{𝑍}𝐵 = Σ𝑥 ∈ {𝑍}⦋𝑥 / 𝑘⦌𝐵 |
23 | 21, 22 | oveq12i 7267 |
. . 3
⊢
(Σ𝑘 ∈
𝐴 𝐵 + Σ𝑘 ∈ {𝑍}𝐵) = (Σ𝑥 ∈ 𝐴 ⦋𝑥 / 𝑘⦌𝐵 + Σ𝑥 ∈ {𝑍}⦋𝑥 / 𝑘⦌𝐵) |
24 | 16, 20, 23 | 3eqtr4g 2804 |
. 2
⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ {𝑍}𝐵)) |
25 | | simp2l 1197 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 ∈ 𝑉) |
26 | | snidg 4592 |
. . . . . . . . 9
⊢ (𝑍 ∈ 𝑉 → 𝑍 ∈ {𝑍}) |
27 | 26 | adantr 480 |
. . . . . . . 8
⊢ ((𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) → 𝑍 ∈ {𝑍}) |
28 | 27 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 ∈ {𝑍}) |
29 | | elun2 4107 |
. . . . . . 7
⊢ (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝐴 ∪ {𝑍})) |
30 | 28, 29 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 ∈ (𝐴 ∪ {𝑍})) |
31 | | simp3 1136 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) |
32 | | rspcsbela 4366 |
. . . . . 6
⊢ ((𝑍 ∈ (𝐴 ∪ {𝑍}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → ⦋𝑍 / 𝑘⦌𝐵 ∈ ℤ) |
33 | 30, 31, 32 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → ⦋𝑍 / 𝑘⦌𝐵 ∈ ℤ) |
34 | 33 | zcnd 12356 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → ⦋𝑍 / 𝑘⦌𝐵 ∈ ℂ) |
35 | | sumsns 15390 |
. . . 4
⊢ ((𝑍 ∈ 𝑉 ∧ ⦋𝑍 / 𝑘⦌𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑍}𝐵 = ⦋𝑍 / 𝑘⦌𝐵) |
36 | 25, 34, 35 | syl2anc 583 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ {𝑍}𝐵 = ⦋𝑍 / 𝑘⦌𝐵) |
37 | 36 | oveq2d 7271 |
. 2
⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ {𝑍}𝐵) = (Σ𝑘 ∈ 𝐴 𝐵 + ⦋𝑍 / 𝑘⦌𝐵)) |
38 | 24, 37 | eqtrd 2778 |
1
⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘 ∈ 𝐴 𝐵 + ⦋𝑍 / 𝑘⦌𝐵)) |