MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsplitsnun Structured version   Visualization version   GIF version

Theorem fsumsplitsnun 15640
Description: Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 17-Dec-2021.)
Assertion
Ref Expression
fsumsplitsnun ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑍 / 𝑘𝐵))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem fsumsplitsnun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-nel 3050 . . . . . . 7 (𝑍𝐴 ↔ ¬ 𝑍𝐴)
2 disjsn 4672 . . . . . . 7 ((𝐴 ∩ {𝑍}) = ∅ ↔ ¬ 𝑍𝐴)
31, 2sylbb2 237 . . . . . 6 (𝑍𝐴 → (𝐴 ∩ {𝑍}) = ∅)
43adantl 482 . . . . 5 ((𝑍𝑉𝑍𝐴) → (𝐴 ∩ {𝑍}) = ∅)
543ad2ant2 1134 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝐴 ∩ {𝑍}) = ∅)
6 eqidd 2737 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝐴 ∪ {𝑍}) = (𝐴 ∪ {𝑍}))
7 snfi 8988 . . . . . 6 {𝑍} ∈ Fin
8 unfi 9116 . . . . . 6 ((𝐴 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝐴 ∪ {𝑍}) ∈ Fin)
97, 8mpan2 689 . . . . 5 (𝐴 ∈ Fin → (𝐴 ∪ {𝑍}) ∈ Fin)
1093ad2ant1 1133 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝐴 ∪ {𝑍}) ∈ Fin)
11 rspcsbela 4395 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∪ {𝑍}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℤ)
1211expcom 414 . . . . . . 7 (∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ → (𝑥 ∈ (𝐴 ∪ {𝑍}) → 𝑥 / 𝑘𝐵 ∈ ℤ))
13123ad2ant3 1135 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴 ∪ {𝑍}) → 𝑥 / 𝑘𝐵 ∈ ℤ))
1413imp 407 . . . . 5 (((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑍})) → 𝑥 / 𝑘𝐵 ∈ ℤ)
1514zcnd 12608 . . . 4 (((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑍})) → 𝑥 / 𝑘𝐵 ∈ ℂ)
165, 6, 10, 15fsumsplit 15626 . . 3 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑥 ∈ (𝐴 ∪ {𝑍})𝑥 / 𝑘𝐵 = (Σ𝑥𝐴 𝑥 / 𝑘𝐵 + Σ𝑥 ∈ {𝑍}𝑥 / 𝑘𝐵))
17 nfcv 2907 . . . 4 𝑥𝐵
18 nfcsb1v 3880 . . . 4 𝑘𝑥 / 𝑘𝐵
19 csbeq1a 3869 . . . 4 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑘𝐵)
2017, 18, 19cbvsumi 15582 . . 3 Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = Σ𝑥 ∈ (𝐴 ∪ {𝑍})𝑥 / 𝑘𝐵
2117, 18, 19cbvsumi 15582 . . . 4 Σ𝑘𝐴 𝐵 = Σ𝑥𝐴 𝑥 / 𝑘𝐵
2217, 18, 19cbvsumi 15582 . . . 4 Σ𝑘 ∈ {𝑍}𝐵 = Σ𝑥 ∈ {𝑍}𝑥 / 𝑘𝐵
2321, 22oveq12i 7369 . . 3 𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑍}𝐵) = (Σ𝑥𝐴 𝑥 / 𝑘𝐵 + Σ𝑥 ∈ {𝑍}𝑥 / 𝑘𝐵)
2416, 20, 233eqtr4g 2801 . 2 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑍}𝐵))
25 simp2l 1199 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍𝑉)
26 snidg 4620 . . . . . . . . 9 (𝑍𝑉𝑍 ∈ {𝑍})
2726adantr 481 . . . . . . . 8 ((𝑍𝑉𝑍𝐴) → 𝑍 ∈ {𝑍})
28273ad2ant2 1134 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 ∈ {𝑍})
29 elun2 4137 . . . . . . 7 (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝐴 ∪ {𝑍}))
3028, 29syl 17 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 ∈ (𝐴 ∪ {𝑍}))
31 simp3 1138 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ)
32 rspcsbela 4395 . . . . . 6 ((𝑍 ∈ (𝐴 ∪ {𝑍}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 / 𝑘𝐵 ∈ ℤ)
3330, 31, 32syl2anc 584 . . . . 5 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 / 𝑘𝐵 ∈ ℤ)
3433zcnd 12608 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 / 𝑘𝐵 ∈ ℂ)
35 sumsns 15635 . . . 4 ((𝑍𝑉𝑍 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑍}𝐵 = 𝑍 / 𝑘𝐵)
3625, 34, 35syl2anc 584 . . 3 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ {𝑍}𝐵 = 𝑍 / 𝑘𝐵)
3736oveq2d 7373 . 2 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑍}𝐵) = (Σ𝑘𝐴 𝐵 + 𝑍 / 𝑘𝐵))
3824, 37eqtrd 2776 1 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑍 / 𝑘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wnel 3049  wral 3064  csb 3855  cun 3908  cin 3909  c0 4282  {csn 4586  (class class class)co 7357  Fincfn 8883  cc 11049   + caddc 11054  cz 12499  Σcsu 15570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571
This theorem is referenced by:  modfsummods  15678  sumeven  16269  sumodd  16270  finsumvtxdg2sstep  28497
  Copyright terms: Public domain W3C validator