MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw3fi Structured version   Visualization version   GIF version

Theorem pmatcollpw3fi 22508
Description: Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p ๐‘ƒ = (Poly1โ€˜๐‘…)
pmatcollpw.c ๐ถ = (๐‘ Mat ๐‘ƒ)
pmatcollpw.b ๐ต = (Baseโ€˜๐ถ)
pmatcollpw.m โˆ— = ( ยท๐‘  โ€˜๐ถ)
pmatcollpw.e โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))
pmatcollpw.x ๐‘‹ = (var1โ€˜๐‘…)
pmatcollpw.t ๐‘‡ = (๐‘ matToPolyMat ๐‘…)
pmatcollpw3.a ๐ด = (๐‘ Mat ๐‘…)
pmatcollpw3.d ๐ท = (Baseโ€˜๐ด)
Assertion
Ref Expression
pmatcollpw3fi ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘  โˆˆ โ„•0 โˆƒ๐‘“ โˆˆ (๐ท โ†‘m (0...๐‘ ))๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘“โ€˜๐‘›))))))
Distinct variable groups:   ๐ต,๐‘›   ๐‘›,๐‘€   ๐‘›,๐‘   ๐‘ƒ,๐‘›   ๐‘…,๐‘›   ๐‘›,๐‘‹   โ†‘ ,๐‘›   ๐ต,๐‘ ,๐‘›   ๐ถ,๐‘›   ๐‘€,๐‘    ๐‘,๐‘    ๐‘…,๐‘    ๐ต,๐‘“   ๐ถ,๐‘“,๐‘›   ๐ท,๐‘“   ๐‘“,๐‘€   ๐‘“,๐‘   ๐‘…,๐‘“   ๐‘‡,๐‘“   ๐‘“,๐‘‹   โ†‘ ,๐‘“   โˆ— ,๐‘“   ๐‘“,๐‘ 
Allowed substitution hints:   ๐ด(๐‘“,๐‘›,๐‘ )   ๐ถ(๐‘ )   ๐ท(๐‘›,๐‘ )   ๐‘ƒ(๐‘“,๐‘ )   ๐‘‡(๐‘›,๐‘ )   โ†‘ (๐‘ )   โˆ— (๐‘›,๐‘ )   ๐‘‹(๐‘ )

Proof of Theorem pmatcollpw3fi
StepHypRef Expression
1 pmatcollpw.p . . 3 ๐‘ƒ = (Poly1โ€˜๐‘…)
2 pmatcollpw.c . . 3 ๐ถ = (๐‘ Mat ๐‘ƒ)
3 pmatcollpw.b . . 3 ๐ต = (Baseโ€˜๐ถ)
4 pmatcollpw.m . . 3 โˆ— = ( ยท๐‘  โ€˜๐ถ)
5 pmatcollpw.e . . 3 โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))
6 pmatcollpw.x . . 3 ๐‘‹ = (var1โ€˜๐‘…)
7 pmatcollpw.t . . 3 ๐‘‡ = (๐‘ matToPolyMat ๐‘…)
81, 2, 3, 4, 5, 6, 7pmatcollpwfi 22505 . 2 ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘  โˆˆ โ„•0 ๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘€ decompPMat ๐‘›))))))
9 elnn0uz 12872 . . . . . 6 (๐‘  โˆˆ โ„•0 โ†” ๐‘  โˆˆ (โ„คโ‰ฅโ€˜0))
10 fzn0 13520 . . . . . 6 ((0...๐‘ ) โ‰  โˆ… โ†” ๐‘  โˆˆ (โ„คโ‰ฅโ€˜0))
119, 10sylbb2 237 . . . . 5 (๐‘  โˆˆ โ„•0 โ†’ (0...๐‘ ) โ‰  โˆ…)
12 fz0ssnn0 13601 . . . . 5 (0...๐‘ ) โŠ† โ„•0
1311, 12jctil 519 . . . 4 (๐‘  โˆˆ โ„•0 โ†’ ((0...๐‘ ) โŠ† โ„•0 โˆง (0...๐‘ ) โ‰  โˆ…))
14 pmatcollpw3.a . . . . 5 ๐ด = (๐‘ Mat ๐‘…)
15 pmatcollpw3.d . . . . 5 ๐ท = (Baseโ€˜๐ด)
161, 2, 3, 4, 5, 6, 7, 14, 15pmatcollpw3lem 22506 . . . 4 (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง ((0...๐‘ ) โŠ† โ„•0 โˆง (0...๐‘ ) โ‰  โˆ…)) โ†’ (๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘€ decompPMat ๐‘›))))) โ†’ โˆƒ๐‘“ โˆˆ (๐ท โ†‘m (0...๐‘ ))๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘“โ€˜๐‘›)))))))
1713, 16sylan2 592 . . 3 (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง ๐‘  โˆˆ โ„•0) โ†’ (๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘€ decompPMat ๐‘›))))) โ†’ โˆƒ๐‘“ โˆˆ (๐ท โ†‘m (0...๐‘ ))๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘“โ€˜๐‘›)))))))
1817reximdva 3167 . 2 ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ (โˆƒ๐‘  โˆˆ โ„•0 ๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘€ decompPMat ๐‘›))))) โ†’ โˆƒ๐‘  โˆˆ โ„•0 โˆƒ๐‘“ โˆˆ (๐ท โ†‘m (0...๐‘ ))๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘“โ€˜๐‘›)))))))
198, 18mpd 15 1 ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘  โˆˆ โ„•0 โˆƒ๐‘“ โˆˆ (๐ท โ†‘m (0...๐‘ ))๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘“โ€˜๐‘›))))))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆง w3a 1086   = wceq 1540   โˆˆ wcel 2105   โ‰  wne 2939  โˆƒwrex 3069   โŠ† wss 3949  โˆ…c0 4323   โ†ฆ cmpt 5232  โ€˜cfv 6544  (class class class)co 7412   โ†‘m cmap 8823  Fincfn 8942  0cc0 11113  โ„•0cn0 12477  โ„คโ‰ฅcuz 12827  ...cfz 13489  Basecbs 17149   ยท๐‘  cvsca 17206   ฮฃg cgsu 17391  .gcmg 18987  mulGrpcmgp 20029  CRingccrg 20129  var1cv1 21920  Poly1cpl1 21921   Mat cmat 22128   matToPolyMat cmat2pmat 22427   decompPMat cdecpmat 22485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-ot 4638  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7673  df-ofr 7674  df-om 7859  df-1st 7978  df-2nd 7979  df-supp 8150  df-cur 8255  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-er 8706  df-map 8825  df-pm 8826  df-ixp 8895  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-fsupp 9365  df-sup 9440  df-oi 9508  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-fz 13490  df-fzo 13633  df-seq 13972  df-hash 14296  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-hom 17226  df-cco 17227  df-0g 17392  df-gsum 17393  df-prds 17398  df-pws 17400  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-mhm 18706  df-submnd 18707  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18988  df-subg 19040  df-ghm 19129  df-cntz 19223  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-srg 20082  df-ring 20130  df-cring 20131  df-subrng 20435  df-subrg 20460  df-lmod 20617  df-lss 20688  df-sra 20931  df-rgmod 20932  df-dsmm 21507  df-frlm 21522  df-assa 21628  df-ascl 21630  df-psr 21682  df-mvr 21683  df-mpl 21684  df-opsr 21686  df-psr1 21924  df-vr1 21925  df-ply1 21926  df-coe1 21927  df-mamu 22107  df-mat 22129  df-mat2pmat 22430  df-decpmat 22486
This theorem is referenced by:  pmatcollpw3fi1  22511
  Copyright terms: Public domain W3C validator