Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmatcollpw3fi | Structured version Visualization version GIF version |
Description: Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 8-Dec-2019.) |
Ref | Expression |
---|---|
pmatcollpw.p | ⊢ 𝑃 = (Poly1‘𝑅) |
pmatcollpw.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
pmatcollpw.b | ⊢ 𝐵 = (Base‘𝐶) |
pmatcollpw.m | ⊢ ∗ = ( ·𝑠 ‘𝐶) |
pmatcollpw.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
pmatcollpw.x | ⊢ 𝑋 = (var1‘𝑅) |
pmatcollpw.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
pmatcollpw3.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
pmatcollpw3.d | ⊢ 𝐷 = (Base‘𝐴) |
Ref | Expression |
---|---|
pmatcollpw3fi | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∃𝑓 ∈ (𝐷 ↑m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatcollpw.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | pmatcollpw.c | . . 3 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
3 | pmatcollpw.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
4 | pmatcollpw.m | . . 3 ⊢ ∗ = ( ·𝑠 ‘𝐶) | |
5 | pmatcollpw.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
6 | pmatcollpw.x | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
7 | pmatcollpw.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
8 | 1, 2, 3, 4, 5, 6, 7 | pmatcollpwfi 21976 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))))) |
9 | elnn0uz 12669 | . . . . . 6 ⊢ (𝑠 ∈ ℕ0 ↔ 𝑠 ∈ (ℤ≥‘0)) | |
10 | fzn0 13316 | . . . . . 6 ⊢ ((0...𝑠) ≠ ∅ ↔ 𝑠 ∈ (ℤ≥‘0)) | |
11 | 9, 10 | sylbb2 237 | . . . . 5 ⊢ (𝑠 ∈ ℕ0 → (0...𝑠) ≠ ∅) |
12 | fz0ssnn0 13397 | . . . . 5 ⊢ (0...𝑠) ⊆ ℕ0 | |
13 | 11, 12 | jctil 521 | . . . 4 ⊢ (𝑠 ∈ ℕ0 → ((0...𝑠) ⊆ ℕ0 ∧ (0...𝑠) ≠ ∅)) |
14 | pmatcollpw3.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
15 | pmatcollpw3.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐴) | |
16 | 1, 2, 3, 4, 5, 6, 7, 14, 15 | pmatcollpw3lem 21977 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ ((0...𝑠) ⊆ ℕ0 ∧ (0...𝑠) ≠ ∅)) → (𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷 ↑m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))))) |
17 | 13, 16 | sylan2 594 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) → (𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷 ↑m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))))) |
18 | 17 | reximdva 3162 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ0 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑠 ∈ ℕ0 ∃𝑓 ∈ (𝐷 ↑m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))))) |
19 | 8, 18 | mpd 15 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∃𝑓 ∈ (𝐷 ↑m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∃wrex 3071 ⊆ wss 3892 ∅c0 4262 ↦ cmpt 5164 ‘cfv 6458 (class class class)co 7307 ↑m cmap 8646 Fincfn 8764 0cc0 10917 ℕ0cn0 12279 ℤ≥cuz 12628 ...cfz 13285 Basecbs 16957 ·𝑠 cvsca 17011 Σg cgsu 17196 .gcmg 18745 mulGrpcmgp 19765 CRingccrg 19829 var1cv1 21392 Poly1cpl1 21393 Mat cmat 21599 matToPolyMat cmat2pmat 21898 decompPMat cdecpmat 21956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-ot 4574 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-ofr 7566 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-cur 8114 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-sup 9245 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-fz 13286 df-fzo 13429 df-seq 13768 df-hash 14091 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-hom 17031 df-cco 17032 df-0g 17197 df-gsum 17198 df-prds 17203 df-pws 17205 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-mhm 18475 df-submnd 18476 df-grp 18625 df-minusg 18626 df-sbg 18627 df-mulg 18746 df-subg 18797 df-ghm 18877 df-cntz 18968 df-cmn 19433 df-abl 19434 df-mgp 19766 df-ur 19783 df-srg 19787 df-ring 19830 df-cring 19831 df-subrg 20067 df-lmod 20170 df-lss 20239 df-sra 20479 df-rgmod 20480 df-dsmm 20984 df-frlm 20999 df-assa 21105 df-ascl 21107 df-psr 21157 df-mvr 21158 df-mpl 21159 df-opsr 21161 df-psr1 21396 df-vr1 21397 df-ply1 21398 df-coe1 21399 df-mamu 21578 df-mat 21600 df-mat2pmat 21901 df-decpmat 21957 |
This theorem is referenced by: pmatcollpw3fi1 21982 |
Copyright terms: Public domain | W3C validator |