MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw3fi Structured version   Visualization version   GIF version

Theorem pmatcollpw3fi 21979
Description: Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpw3.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpw3.d 𝐷 = (Base‘𝐴)
Assertion
Ref Expression
pmatcollpw3fi ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑛,𝑋   ,𝑛   𝐵,𝑠,𝑛   𝐶,𝑛   𝑀,𝑠   𝑁,𝑠   𝑅,𝑠   𝐵,𝑓   𝐶,𝑓,𝑛   𝐷,𝑓   𝑓,𝑀   𝑓,𝑁   𝑅,𝑓   𝑇,𝑓   𝑓,𝑋   ,𝑓   ,𝑓   𝑓,𝑠
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠)   𝐶(𝑠)   𝐷(𝑛,𝑠)   𝑃(𝑓,𝑠)   𝑇(𝑛,𝑠)   (𝑠)   (𝑛,𝑠)   𝑋(𝑠)

Proof of Theorem pmatcollpw3fi
StepHypRef Expression
1 pmatcollpw.p . . 3 𝑃 = (Poly1𝑅)
2 pmatcollpw.c . . 3 𝐶 = (𝑁 Mat 𝑃)
3 pmatcollpw.b . . 3 𝐵 = (Base‘𝐶)
4 pmatcollpw.m . . 3 = ( ·𝑠𝐶)
5 pmatcollpw.e . . 3 = (.g‘(mulGrp‘𝑃))
6 pmatcollpw.x . . 3 𝑋 = (var1𝑅)
7 pmatcollpw.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
81, 2, 3, 4, 5, 6, 7pmatcollpwfi 21976 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
9 elnn0uz 12669 . . . . . 6 (𝑠 ∈ ℕ0𝑠 ∈ (ℤ‘0))
10 fzn0 13316 . . . . . 6 ((0...𝑠) ≠ ∅ ↔ 𝑠 ∈ (ℤ‘0))
119, 10sylbb2 237 . . . . 5 (𝑠 ∈ ℕ0 → (0...𝑠) ≠ ∅)
12 fz0ssnn0 13397 . . . . 5 (0...𝑠) ⊆ ℕ0
1311, 12jctil 521 . . . 4 (𝑠 ∈ ℕ0 → ((0...𝑠) ⊆ ℕ0 ∧ (0...𝑠) ≠ ∅))
14 pmatcollpw3.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
15 pmatcollpw3.d . . . . 5 𝐷 = (Base‘𝐴)
161, 2, 3, 4, 5, 6, 7, 14, 15pmatcollpw3lem 21977 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ ((0...𝑠) ⊆ ℕ0 ∧ (0...𝑠) ≠ ∅)) → (𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
1713, 16sylan2 594 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → (𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
1817reximdva 3162 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
198, 18mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  wne 2941  wrex 3071  wss 3892  c0 4262  cmpt 5164  cfv 6458  (class class class)co 7307  m cmap 8646  Fincfn 8764  0cc0 10917  0cn0 12279  cuz 12628  ...cfz 13285  Basecbs 16957   ·𝑠 cvsca 17011   Σg cgsu 17196  .gcmg 18745  mulGrpcmgp 19765  CRingccrg 19829  var1cv1 21392  Poly1cpl1 21393   Mat cmat 21599   matToPolyMat cmat2pmat 21898   decompPMat cdecpmat 21956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-ot 4574  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-ofr 7566  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-cur 8114  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-pm 8649  df-ixp 8717  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9173  df-sup 9245  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-z 12366  df-dec 12484  df-uz 12629  df-fz 13286  df-fzo 13429  df-seq 13768  df-hash 14091  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-mulr 17021  df-sca 17023  df-vsca 17024  df-ip 17025  df-tset 17026  df-ple 17027  df-ds 17029  df-hom 17031  df-cco 17032  df-0g 17197  df-gsum 17198  df-prds 17203  df-pws 17205  df-mre 17340  df-mrc 17341  df-acs 17343  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-mhm 18475  df-submnd 18476  df-grp 18625  df-minusg 18626  df-sbg 18627  df-mulg 18746  df-subg 18797  df-ghm 18877  df-cntz 18968  df-cmn 19433  df-abl 19434  df-mgp 19766  df-ur 19783  df-srg 19787  df-ring 19830  df-cring 19831  df-subrg 20067  df-lmod 20170  df-lss 20239  df-sra 20479  df-rgmod 20480  df-dsmm 20984  df-frlm 20999  df-assa 21105  df-ascl 21107  df-psr 21157  df-mvr 21158  df-mpl 21159  df-opsr 21161  df-psr1 21396  df-vr1 21397  df-ply1 21398  df-coe1 21399  df-mamu 21578  df-mat 21600  df-mat2pmat 21901  df-decpmat 21957
This theorem is referenced by:  pmatcollpw3fi1  21982
  Copyright terms: Public domain W3C validator