MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw3fi Structured version   Visualization version   GIF version

Theorem pmatcollpw3fi 22674
Description: Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p ๐‘ƒ = (Poly1โ€˜๐‘…)
pmatcollpw.c ๐ถ = (๐‘ Mat ๐‘ƒ)
pmatcollpw.b ๐ต = (Baseโ€˜๐ถ)
pmatcollpw.m โˆ— = ( ยท๐‘  โ€˜๐ถ)
pmatcollpw.e โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))
pmatcollpw.x ๐‘‹ = (var1โ€˜๐‘…)
pmatcollpw.t ๐‘‡ = (๐‘ matToPolyMat ๐‘…)
pmatcollpw3.a ๐ด = (๐‘ Mat ๐‘…)
pmatcollpw3.d ๐ท = (Baseโ€˜๐ด)
Assertion
Ref Expression
pmatcollpw3fi ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘  โˆˆ โ„•0 โˆƒ๐‘“ โˆˆ (๐ท โ†‘m (0...๐‘ ))๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘“โ€˜๐‘›))))))
Distinct variable groups:   ๐ต,๐‘›   ๐‘›,๐‘€   ๐‘›,๐‘   ๐‘ƒ,๐‘›   ๐‘…,๐‘›   ๐‘›,๐‘‹   โ†‘ ,๐‘›   ๐ต,๐‘ ,๐‘›   ๐ถ,๐‘›   ๐‘€,๐‘    ๐‘,๐‘    ๐‘…,๐‘    ๐ต,๐‘“   ๐ถ,๐‘“,๐‘›   ๐ท,๐‘“   ๐‘“,๐‘€   ๐‘“,๐‘   ๐‘…,๐‘“   ๐‘‡,๐‘“   ๐‘“,๐‘‹   โ†‘ ,๐‘“   โˆ— ,๐‘“   ๐‘“,๐‘ 
Allowed substitution hints:   ๐ด(๐‘“,๐‘›,๐‘ )   ๐ถ(๐‘ )   ๐ท(๐‘›,๐‘ )   ๐‘ƒ(๐‘“,๐‘ )   ๐‘‡(๐‘›,๐‘ )   โ†‘ (๐‘ )   โˆ— (๐‘›,๐‘ )   ๐‘‹(๐‘ )

Proof of Theorem pmatcollpw3fi
StepHypRef Expression
1 pmatcollpw.p . . 3 ๐‘ƒ = (Poly1โ€˜๐‘…)
2 pmatcollpw.c . . 3 ๐ถ = (๐‘ Mat ๐‘ƒ)
3 pmatcollpw.b . . 3 ๐ต = (Baseโ€˜๐ถ)
4 pmatcollpw.m . . 3 โˆ— = ( ยท๐‘  โ€˜๐ถ)
5 pmatcollpw.e . . 3 โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))
6 pmatcollpw.x . . 3 ๐‘‹ = (var1โ€˜๐‘…)
7 pmatcollpw.t . . 3 ๐‘‡ = (๐‘ matToPolyMat ๐‘…)
81, 2, 3, 4, 5, 6, 7pmatcollpwfi 22671 . 2 ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘  โˆˆ โ„•0 ๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘€ decompPMat ๐‘›))))))
9 elnn0uz 12889 . . . . . 6 (๐‘  โˆˆ โ„•0 โ†” ๐‘  โˆˆ (โ„คโ‰ฅโ€˜0))
10 fzn0 13539 . . . . . 6 ((0...๐‘ ) โ‰  โˆ… โ†” ๐‘  โˆˆ (โ„คโ‰ฅโ€˜0))
119, 10sylbb2 237 . . . . 5 (๐‘  โˆˆ โ„•0 โ†’ (0...๐‘ ) โ‰  โˆ…)
12 fz0ssnn0 13620 . . . . 5 (0...๐‘ ) โІ โ„•0
1311, 12jctil 519 . . . 4 (๐‘  โˆˆ โ„•0 โ†’ ((0...๐‘ ) โІ โ„•0 โˆง (0...๐‘ ) โ‰  โˆ…))
14 pmatcollpw3.a . . . . 5 ๐ด = (๐‘ Mat ๐‘…)
15 pmatcollpw3.d . . . . 5 ๐ท = (Baseโ€˜๐ด)
161, 2, 3, 4, 5, 6, 7, 14, 15pmatcollpw3lem 22672 . . . 4 (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง ((0...๐‘ ) โІ โ„•0 โˆง (0...๐‘ ) โ‰  โˆ…)) โ†’ (๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘€ decompPMat ๐‘›))))) โ†’ โˆƒ๐‘“ โˆˆ (๐ท โ†‘m (0...๐‘ ))๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘“โ€˜๐‘›)))))))
1713, 16sylan2 592 . . 3 (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง ๐‘  โˆˆ โ„•0) โ†’ (๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘€ decompPMat ๐‘›))))) โ†’ โˆƒ๐‘“ โˆˆ (๐ท โ†‘m (0...๐‘ ))๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘“โ€˜๐‘›)))))))
1817reximdva 3163 . 2 ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ (โˆƒ๐‘  โˆˆ โ„•0 ๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘€ decompPMat ๐‘›))))) โ†’ โˆƒ๐‘  โˆˆ โ„•0 โˆƒ๐‘“ โˆˆ (๐ท โ†‘m (0...๐‘ ))๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘“โ€˜๐‘›)))))))
198, 18mpd 15 1 ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘  โˆˆ โ„•0 โˆƒ๐‘“ โˆˆ (๐ท โ†‘m (0...๐‘ ))๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ (0...๐‘ ) โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘“โ€˜๐‘›))))))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆง w3a 1085   = wceq 1534   โˆˆ wcel 2099   โ‰  wne 2935  โˆƒwrex 3065   โІ wss 3944  โˆ…c0 4318   โ†ฆ cmpt 5225  โ€˜cfv 6542  (class class class)co 7414   โ†‘m cmap 8836  Fincfn 8955  0cc0 11130  โ„•0cn0 12494  โ„คโ‰ฅcuz 12844  ...cfz 13508  Basecbs 17171   ยท๐‘  cvsca 17228   ฮฃg cgsu 17413  .gcmg 19014  mulGrpcmgp 20065  CRingccrg 20165  var1cv1 22082  Poly1cpl1 22083   Mat cmat 22294   matToPolyMat cmat2pmat 22593   decompPMat cdecpmat 22651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-cur 8266  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-hom 17248  df-cco 17249  df-0g 17414  df-gsum 17415  df-prds 17420  df-pws 17422  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-submnd 18732  df-grp 18884  df-minusg 18885  df-sbg 18886  df-mulg 19015  df-subg 19069  df-ghm 19159  df-cntz 19259  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-srg 20118  df-ring 20166  df-cring 20167  df-subrng 20472  df-subrg 20497  df-lmod 20734  df-lss 20805  df-sra 21047  df-rgmod 21048  df-dsmm 21653  df-frlm 21668  df-assa 21774  df-ascl 21776  df-psr 21829  df-mvr 21830  df-mpl 21831  df-opsr 21833  df-psr1 22086  df-vr1 22087  df-ply1 22088  df-coe1 22089  df-mamu 22273  df-mat 22295  df-mat2pmat 22596  df-decpmat 22652
This theorem is referenced by:  pmatcollpw3fi1  22677
  Copyright terms: Public domain W3C validator