MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkflem Structured version   Visualization version   GIF version

Theorem clwlkclwwlkflem 27468
Description: Lemma for clwlkclwwlkf 27472. (Contributed by AV, 24-May-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.a 𝐴 = (1st𝑈)
clwlkclwwlkf.b 𝐵 = (2nd𝑈)
Assertion
Ref Expression
clwlkclwwlkflem (𝑈𝐶 → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐴   𝑤,𝑈
Allowed substitution hints:   𝐵(𝑤)   𝐶(𝑤)

Proof of Theorem clwlkclwwlkflem
StepHypRef Expression
1 fveq2 6545 . . . . . 6 (𝑤 = 𝑈 → (1st𝑤) = (1st𝑈))
2 clwlkclwwlkf.a . . . . . 6 𝐴 = (1st𝑈)
31, 2syl6eqr 2851 . . . . 5 (𝑤 = 𝑈 → (1st𝑤) = 𝐴)
43fveq2d 6549 . . . 4 (𝑤 = 𝑈 → (♯‘(1st𝑤)) = (♯‘𝐴))
54breq2d 4980 . . 3 (𝑤 = 𝑈 → (1 ≤ (♯‘(1st𝑤)) ↔ 1 ≤ (♯‘𝐴)))
6 clwlkclwwlkf.c . . 3 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
75, 6elrab2 3624 . 2 (𝑈𝐶 ↔ (𝑈 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘𝐴)))
8 clwlkwlk 27242 . . . 4 (𝑈 ∈ (ClWalks‘𝐺) → 𝑈 ∈ (Walks‘𝐺))
9 wlkop 27096 . . . . 5 (𝑈 ∈ (Walks‘𝐺) → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
10 clwlkclwwlkf.b . . . . . . . 8 𝐵 = (2nd𝑈)
112, 10opeq12i 4721 . . . . . . 7 𝐴, 𝐵⟩ = ⟨(1st𝑈), (2nd𝑈)⟩
1211eqeq2i 2809 . . . . . 6 (𝑈 = ⟨𝐴, 𝐵⟩ ↔ 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
13 eleq1 2872 . . . . . . 7 (𝑈 = ⟨𝐴, 𝐵⟩ → (𝑈 ∈ (ClWalks‘𝐺) ↔ ⟨𝐴, 𝐵⟩ ∈ (ClWalks‘𝐺)))
14 df-br 4969 . . . . . . . 8 (𝐴(ClWalks‘𝐺)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (ClWalks‘𝐺))
15 isclwlk 27240 . . . . . . . . 9 (𝐴(ClWalks‘𝐺)𝐵 ↔ (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴))))
16 wlkcl 27084 . . . . . . . . . . . . . . 15 (𝐴(Walks‘𝐺)𝐵 → (♯‘𝐴) ∈ ℕ0)
17 elnnnn0c 11796 . . . . . . . . . . . . . . . 16 ((♯‘𝐴) ∈ ℕ ↔ ((♯‘𝐴) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐴)))
1817a1i 11 . . . . . . . . . . . . . . 15 (𝐴(Walks‘𝐺)𝐵 → ((♯‘𝐴) ∈ ℕ ↔ ((♯‘𝐴) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐴))))
1916, 18mpbirand 703 . . . . . . . . . . . . . 14 (𝐴(Walks‘𝐺)𝐵 → ((♯‘𝐴) ∈ ℕ ↔ 1 ≤ (♯‘𝐴)))
2019bicomd 224 . . . . . . . . . . . . 13 (𝐴(Walks‘𝐺)𝐵 → (1 ≤ (♯‘𝐴) ↔ (♯‘𝐴) ∈ ℕ))
2120adantr 481 . . . . . . . . . . . 12 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴))) → (1 ≤ (♯‘𝐴) ↔ (♯‘𝐴) ∈ ℕ))
2221pm5.32i 575 . . . . . . . . . . 11 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴))) ∧ 1 ≤ (♯‘𝐴)) ↔ ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴))) ∧ (♯‘𝐴) ∈ ℕ))
23 df-3an 1082 . . . . . . . . . . 11 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ↔ ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴))) ∧ (♯‘𝐴) ∈ ℕ))
2422, 23sylbb2 239 . . . . . . . . . 10 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴))) ∧ 1 ≤ (♯‘𝐴)) → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))
2524ex 413 . . . . . . . . 9 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴))) → (1 ≤ (♯‘𝐴) → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ)))
2615, 25sylbi 218 . . . . . . . 8 (𝐴(ClWalks‘𝐺)𝐵 → (1 ≤ (♯‘𝐴) → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ)))
2714, 26sylbir 236 . . . . . . 7 (⟨𝐴, 𝐵⟩ ∈ (ClWalks‘𝐺) → (1 ≤ (♯‘𝐴) → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ)))
2813, 27syl6bi 254 . . . . . 6 (𝑈 = ⟨𝐴, 𝐵⟩ → (𝑈 ∈ (ClWalks‘𝐺) → (1 ≤ (♯‘𝐴) → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))))
2912, 28sylbir 236 . . . . 5 (𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩ → (𝑈 ∈ (ClWalks‘𝐺) → (1 ≤ (♯‘𝐴) → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))))
309, 29syl 17 . . . 4 (𝑈 ∈ (Walks‘𝐺) → (𝑈 ∈ (ClWalks‘𝐺) → (1 ≤ (♯‘𝐴) → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))))
318, 30mpcom 38 . . 3 (𝑈 ∈ (ClWalks‘𝐺) → (1 ≤ (♯‘𝐴) → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ)))
3231imp 407 . 2 ((𝑈 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘𝐴)) → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))
337, 32sylbi 218 1 (𝑈𝐶 → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083  {crab 3111  cop 4484   class class class wbr 4968  cfv 6232  1st c1st 7550  2nd c2nd 7551  0cc0 10390  1c1 10391  cle 10529  cn 11492  0cn0 11751  chash 13544  Walkscwlks 27065  ClWalkscclwlks 27237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-ifp 1056  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-map 8265  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-n0 11752  df-z 11836  df-uz 12098  df-fz 12747  df-fzo 12888  df-hash 13545  df-word 13712  df-wlks 27068  df-clwlks 27238
This theorem is referenced by:  clwlkclwwlkf1lem2  27469  clwlkclwwlkf1lem3  27470  clwlkclwwlkf  27472  clwlkclwwlkf1  27474
  Copyright terms: Public domain W3C validator