MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkflem Structured version   Visualization version   GIF version

Theorem clwlkclwwlkflem 29525
Description: Lemma for clwlkclwwlkf 29529. (Contributed by AV, 24-May-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}
clwlkclwwlkf.a 𝐴 = (1st β€˜π‘ˆ)
clwlkclwwlkf.b 𝐡 = (2nd β€˜π‘ˆ)
Assertion
Ref Expression
clwlkclwwlkflem (π‘ˆ ∈ 𝐢 β†’ (𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄)) ∧ (β™―β€˜π΄) ∈ β„•))
Distinct variable groups:   𝑀,𝐺   𝑀,𝐴   𝑀,π‘ˆ
Allowed substitution hints:   𝐡(𝑀)   𝐢(𝑀)

Proof of Theorem clwlkclwwlkflem
StepHypRef Expression
1 fveq2 6891 . . . . . 6 (𝑀 = π‘ˆ β†’ (1st β€˜π‘€) = (1st β€˜π‘ˆ))
2 clwlkclwwlkf.a . . . . . 6 𝐴 = (1st β€˜π‘ˆ)
31, 2eqtr4di 2789 . . . . 5 (𝑀 = π‘ˆ β†’ (1st β€˜π‘€) = 𝐴)
43fveq2d 6895 . . . 4 (𝑀 = π‘ˆ β†’ (β™―β€˜(1st β€˜π‘€)) = (β™―β€˜π΄))
54breq2d 5160 . . 3 (𝑀 = π‘ˆ β†’ (1 ≀ (β™―β€˜(1st β€˜π‘€)) ↔ 1 ≀ (β™―β€˜π΄)))
6 clwlkclwwlkf.c . . 3 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}
75, 6elrab2 3686 . 2 (π‘ˆ ∈ 𝐢 ↔ (π‘ˆ ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜π΄)))
8 clwlkwlk 29300 . . . 4 (π‘ˆ ∈ (ClWalksβ€˜πΊ) β†’ π‘ˆ ∈ (Walksβ€˜πΊ))
9 wlkop 29153 . . . . 5 (π‘ˆ ∈ (Walksβ€˜πΊ) β†’ π‘ˆ = ⟨(1st β€˜π‘ˆ), (2nd β€˜π‘ˆ)⟩)
10 clwlkclwwlkf.b . . . . . . . 8 𝐡 = (2nd β€˜π‘ˆ)
112, 10opeq12i 4878 . . . . . . 7 ⟨𝐴, 𝐡⟩ = ⟨(1st β€˜π‘ˆ), (2nd β€˜π‘ˆ)⟩
1211eqeq2i 2744 . . . . . 6 (π‘ˆ = ⟨𝐴, 𝐡⟩ ↔ π‘ˆ = ⟨(1st β€˜π‘ˆ), (2nd β€˜π‘ˆ)⟩)
13 eleq1 2820 . . . . . . 7 (π‘ˆ = ⟨𝐴, 𝐡⟩ β†’ (π‘ˆ ∈ (ClWalksβ€˜πΊ) ↔ ⟨𝐴, 𝐡⟩ ∈ (ClWalksβ€˜πΊ)))
14 df-br 5149 . . . . . . . 8 (𝐴(ClWalksβ€˜πΊ)𝐡 ↔ ⟨𝐴, 𝐡⟩ ∈ (ClWalksβ€˜πΊ))
15 isclwlk 29298 . . . . . . . . 9 (𝐴(ClWalksβ€˜πΊ)𝐡 ↔ (𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄))))
16 wlkcl 29140 . . . . . . . . . . . . . . 15 (𝐴(Walksβ€˜πΊ)𝐡 β†’ (β™―β€˜π΄) ∈ β„•0)
17 elnnnn0c 12522 . . . . . . . . . . . . . . . 16 ((β™―β€˜π΄) ∈ β„• ↔ ((β™―β€˜π΄) ∈ β„•0 ∧ 1 ≀ (β™―β€˜π΄)))
1817a1i 11 . . . . . . . . . . . . . . 15 (𝐴(Walksβ€˜πΊ)𝐡 β†’ ((β™―β€˜π΄) ∈ β„• ↔ ((β™―β€˜π΄) ∈ β„•0 ∧ 1 ≀ (β™―β€˜π΄))))
1916, 18mpbirand 704 . . . . . . . . . . . . . 14 (𝐴(Walksβ€˜πΊ)𝐡 β†’ ((β™―β€˜π΄) ∈ β„• ↔ 1 ≀ (β™―β€˜π΄)))
2019bicomd 222 . . . . . . . . . . . . 13 (𝐴(Walksβ€˜πΊ)𝐡 β†’ (1 ≀ (β™―β€˜π΄) ↔ (β™―β€˜π΄) ∈ β„•))
2120adantr 480 . . . . . . . . . . . 12 ((𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄))) β†’ (1 ≀ (β™―β€˜π΄) ↔ (β™―β€˜π΄) ∈ β„•))
2221pm5.32i 574 . . . . . . . . . . 11 (((𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄))) ∧ 1 ≀ (β™―β€˜π΄)) ↔ ((𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄))) ∧ (β™―β€˜π΄) ∈ β„•))
23 df-3an 1088 . . . . . . . . . . 11 ((𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄)) ∧ (β™―β€˜π΄) ∈ β„•) ↔ ((𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄))) ∧ (β™―β€˜π΄) ∈ β„•))
2422, 23sylbb2 237 . . . . . . . . . 10 (((𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄))) ∧ 1 ≀ (β™―β€˜π΄)) β†’ (𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄)) ∧ (β™―β€˜π΄) ∈ β„•))
2524ex 412 . . . . . . . . 9 ((𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄))) β†’ (1 ≀ (β™―β€˜π΄) β†’ (𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄)) ∧ (β™―β€˜π΄) ∈ β„•)))
2615, 25sylbi 216 . . . . . . . 8 (𝐴(ClWalksβ€˜πΊ)𝐡 β†’ (1 ≀ (β™―β€˜π΄) β†’ (𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄)) ∧ (β™―β€˜π΄) ∈ β„•)))
2714, 26sylbir 234 . . . . . . 7 (⟨𝐴, 𝐡⟩ ∈ (ClWalksβ€˜πΊ) β†’ (1 ≀ (β™―β€˜π΄) β†’ (𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄)) ∧ (β™―β€˜π΄) ∈ β„•)))
2813, 27syl6bi 253 . . . . . 6 (π‘ˆ = ⟨𝐴, 𝐡⟩ β†’ (π‘ˆ ∈ (ClWalksβ€˜πΊ) β†’ (1 ≀ (β™―β€˜π΄) β†’ (𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄)) ∧ (β™―β€˜π΄) ∈ β„•))))
2912, 28sylbir 234 . . . . 5 (π‘ˆ = ⟨(1st β€˜π‘ˆ), (2nd β€˜π‘ˆ)⟩ β†’ (π‘ˆ ∈ (ClWalksβ€˜πΊ) β†’ (1 ≀ (β™―β€˜π΄) β†’ (𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄)) ∧ (β™―β€˜π΄) ∈ β„•))))
309, 29syl 17 . . . 4 (π‘ˆ ∈ (Walksβ€˜πΊ) β†’ (π‘ˆ ∈ (ClWalksβ€˜πΊ) β†’ (1 ≀ (β™―β€˜π΄) β†’ (𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄)) ∧ (β™―β€˜π΄) ∈ β„•))))
318, 30mpcom 38 . . 3 (π‘ˆ ∈ (ClWalksβ€˜πΊ) β†’ (1 ≀ (β™―β€˜π΄) β†’ (𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄)) ∧ (β™―β€˜π΄) ∈ β„•)))
3231imp 406 . 2 ((π‘ˆ ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜π΄)) β†’ (𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄)) ∧ (β™―β€˜π΄) ∈ β„•))
337, 32sylbi 216 1 (π‘ˆ ∈ 𝐢 β†’ (𝐴(Walksβ€˜πΊ)𝐡 ∧ (π΅β€˜0) = (π΅β€˜(β™―β€˜π΄)) ∧ (β™―β€˜π΄) ∈ β„•))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  {crab 3431  βŸ¨cop 4634   class class class wbr 5148  β€˜cfv 6543  1st c1st 7977  2nd c2nd 7978  0cc0 11114  1c1 11115   ≀ cle 11254  β„•cn 12217  β„•0cn0 12477  β™―chash 14295  Walkscwlks 29121  ClWalkscclwlks 29295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633  df-hash 14296  df-word 14470  df-wlks 29124  df-clwlks 29296
This theorem is referenced by:  clwlkclwwlkf1lem2  29526  clwlkclwwlkf1lem3  29527  clwlkclwwlkf  29529  clwlkclwwlkf1  29531
  Copyright terms: Public domain W3C validator