Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nninfnub Structured version   Visualization version   GIF version

Theorem nninfnub 36283
Description: An infinite set of positive integers is unbounded above. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
nninfnub ((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nninfnub
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eq0 4308 . . . . . 6 ({𝑥𝐴𝐵 < 𝑥} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥})
2 breq2 5114 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐵 < 𝑥𝐵 < 𝑦))
32elrab 3648 . . . . . . . . . . 11 (𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} ↔ (𝑦𝐴𝐵 < 𝑦))
43notbii 319 . . . . . . . . . 10 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} ↔ ¬ (𝑦𝐴𝐵 < 𝑦))
5 imnan 400 . . . . . . . . . 10 ((𝑦𝐴 → ¬ 𝐵 < 𝑦) ↔ ¬ (𝑦𝐴𝐵 < 𝑦))
64, 5sylbb2 237 . . . . . . . . 9 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → (𝑦𝐴 → ¬ 𝐵 < 𝑦))
76alimi 1813 . . . . . . . 8 (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → ∀𝑦(𝑦𝐴 → ¬ 𝐵 < 𝑦))
8 df-ral 3061 . . . . . . . 8 (∀𝑦𝐴 ¬ 𝐵 < 𝑦 ↔ ∀𝑦(𝑦𝐴 → ¬ 𝐵 < 𝑦))
97, 8sylibr 233 . . . . . . 7 (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → ∀𝑦𝐴 ¬ 𝐵 < 𝑦)
10 ssel2 3942 . . . . . . . . . . . 12 ((𝐴 ⊆ ℕ ∧ 𝑦𝐴) → 𝑦 ∈ ℕ)
1110nnred 12177 . . . . . . . . . . 11 ((𝐴 ⊆ ℕ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
1211adantlr 713 . . . . . . . . . 10 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
13 nnre 12169 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1413ad2antlr 725 . . . . . . . . . 10 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → 𝐵 ∈ ℝ)
15 lenlt 11242 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦𝐵 ↔ ¬ 𝐵 < 𝑦))
1615biimprd 247 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝑦𝑦𝐵))
1712, 14, 16syl2anc 584 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → (¬ 𝐵 < 𝑦𝑦𝐵))
1817ralimdva 3160 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 ¬ 𝐵 < 𝑦 → ∀𝑦𝐴 𝑦𝐵))
19 fzfi 13887 . . . . . . . . . 10 (0...𝐵) ∈ Fin
2010nnnn0d 12482 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℕ ∧ 𝑦𝐴) → 𝑦 ∈ ℕ0)
2120adantlr 713 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → 𝑦 ∈ ℕ0)
2221adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ℕ0)
23 nnnn0 12429 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
2423ad3antlr 729 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝐵 ∈ ℕ0)
25 simpr 485 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦𝐵)
2622, 24, 253jca 1128 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (𝑦 ∈ ℕ0𝐵 ∈ ℕ0𝑦𝐵))
2726ex 413 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → (𝑦𝐵 → (𝑦 ∈ ℕ0𝐵 ∈ ℕ0𝑦𝐵)))
28 elfz2nn0 13542 . . . . . . . . . . . . . 14 (𝑦 ∈ (0...𝐵) ↔ (𝑦 ∈ ℕ0𝐵 ∈ ℕ0𝑦𝐵))
2927, 28syl6ibr 251 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → (𝑦𝐵𝑦 ∈ (0...𝐵)))
3029ralimdva 3160 . . . . . . . . . . . 12 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 𝑦𝐵 → ∀𝑦𝐴 𝑦 ∈ (0...𝐵)))
3130imp 407 . . . . . . . . . . 11 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ∀𝑦𝐴 𝑦𝐵) → ∀𝑦𝐴 𝑦 ∈ (0...𝐵))
32 dfss3 3935 . . . . . . . . . . 11 (𝐴 ⊆ (0...𝐵) ↔ ∀𝑦𝐴 𝑦 ∈ (0...𝐵))
3331, 32sylibr 233 . . . . . . . . . 10 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ∀𝑦𝐴 𝑦𝐵) → 𝐴 ⊆ (0...𝐵))
34 ssfi 9124 . . . . . . . . . 10 (((0...𝐵) ∈ Fin ∧ 𝐴 ⊆ (0...𝐵)) → 𝐴 ∈ Fin)
3519, 33, 34sylancr 587 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ∀𝑦𝐴 𝑦𝐵) → 𝐴 ∈ Fin)
3635ex 413 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 𝑦𝐵𝐴 ∈ Fin))
3718, 36syld 47 . . . . . . 7 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 ¬ 𝐵 < 𝑦𝐴 ∈ Fin))
389, 37syl5 34 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → 𝐴 ∈ Fin))
391, 38biimtrid 241 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → ({𝑥𝐴𝐵 < 𝑥} = ∅ → 𝐴 ∈ Fin))
4039necon3bd 2953 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 𝐴 ∈ Fin → {𝑥𝐴𝐵 < 𝑥} ≠ ∅))
4140imp 407 . . 3 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ¬ 𝐴 ∈ Fin) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
4241an32s 650 . 2 (((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
43423impa 1110 1 ((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087  wal 1539   = wceq 1541  wcel 2106  wne 2939  wral 3060  {crab 3405  wss 3913  c0 4287   class class class wbr 5110  (class class class)co 7362  Fincfn 8890  cr 11059  0cc0 11060   < clt 11198  cle 11199  cn 12162  0cn0 12422  ...cfz 13434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-n0 12423  df-z 12509  df-uz 12773  df-fz 13435
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator