Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nninfnub Structured version   Visualization version   GIF version

Theorem nninfnub 35836
Description: An infinite set of positive integers is unbounded above. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
nninfnub ((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nninfnub
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eq0 4274 . . . . . 6 ({𝑥𝐴𝐵 < 𝑥} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥})
2 breq2 5074 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐵 < 𝑥𝐵 < 𝑦))
32elrab 3617 . . . . . . . . . . 11 (𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} ↔ (𝑦𝐴𝐵 < 𝑦))
43notbii 319 . . . . . . . . . 10 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} ↔ ¬ (𝑦𝐴𝐵 < 𝑦))
5 imnan 399 . . . . . . . . . 10 ((𝑦𝐴 → ¬ 𝐵 < 𝑦) ↔ ¬ (𝑦𝐴𝐵 < 𝑦))
64, 5sylbb2 237 . . . . . . . . 9 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → (𝑦𝐴 → ¬ 𝐵 < 𝑦))
76alimi 1815 . . . . . . . 8 (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → ∀𝑦(𝑦𝐴 → ¬ 𝐵 < 𝑦))
8 df-ral 3068 . . . . . . . 8 (∀𝑦𝐴 ¬ 𝐵 < 𝑦 ↔ ∀𝑦(𝑦𝐴 → ¬ 𝐵 < 𝑦))
97, 8sylibr 233 . . . . . . 7 (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → ∀𝑦𝐴 ¬ 𝐵 < 𝑦)
10 ssel2 3912 . . . . . . . . . . . 12 ((𝐴 ⊆ ℕ ∧ 𝑦𝐴) → 𝑦 ∈ ℕ)
1110nnred 11918 . . . . . . . . . . 11 ((𝐴 ⊆ ℕ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
1211adantlr 711 . . . . . . . . . 10 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
13 nnre 11910 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1413ad2antlr 723 . . . . . . . . . 10 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → 𝐵 ∈ ℝ)
15 lenlt 10984 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦𝐵 ↔ ¬ 𝐵 < 𝑦))
1615biimprd 247 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝑦𝑦𝐵))
1712, 14, 16syl2anc 583 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → (¬ 𝐵 < 𝑦𝑦𝐵))
1817ralimdva 3102 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 ¬ 𝐵 < 𝑦 → ∀𝑦𝐴 𝑦𝐵))
19 fzfi 13620 . . . . . . . . . 10 (0...𝐵) ∈ Fin
2010nnnn0d 12223 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℕ ∧ 𝑦𝐴) → 𝑦 ∈ ℕ0)
2120adantlr 711 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → 𝑦 ∈ ℕ0)
2221adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ℕ0)
23 nnnn0 12170 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
2423ad3antlr 727 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝐵 ∈ ℕ0)
25 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦𝐵)
2622, 24, 253jca 1126 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (𝑦 ∈ ℕ0𝐵 ∈ ℕ0𝑦𝐵))
2726ex 412 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → (𝑦𝐵 → (𝑦 ∈ ℕ0𝐵 ∈ ℕ0𝑦𝐵)))
28 elfz2nn0 13276 . . . . . . . . . . . . . 14 (𝑦 ∈ (0...𝐵) ↔ (𝑦 ∈ ℕ0𝐵 ∈ ℕ0𝑦𝐵))
2927, 28syl6ibr 251 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → (𝑦𝐵𝑦 ∈ (0...𝐵)))
3029ralimdva 3102 . . . . . . . . . . . 12 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 𝑦𝐵 → ∀𝑦𝐴 𝑦 ∈ (0...𝐵)))
3130imp 406 . . . . . . . . . . 11 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ∀𝑦𝐴 𝑦𝐵) → ∀𝑦𝐴 𝑦 ∈ (0...𝐵))
32 dfss3 3905 . . . . . . . . . . 11 (𝐴 ⊆ (0...𝐵) ↔ ∀𝑦𝐴 𝑦 ∈ (0...𝐵))
3331, 32sylibr 233 . . . . . . . . . 10 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ∀𝑦𝐴 𝑦𝐵) → 𝐴 ⊆ (0...𝐵))
34 ssfi 8918 . . . . . . . . . 10 (((0...𝐵) ∈ Fin ∧ 𝐴 ⊆ (0...𝐵)) → 𝐴 ∈ Fin)
3519, 33, 34sylancr 586 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ∀𝑦𝐴 𝑦𝐵) → 𝐴 ∈ Fin)
3635ex 412 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 𝑦𝐵𝐴 ∈ Fin))
3718, 36syld 47 . . . . . . 7 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 ¬ 𝐵 < 𝑦𝐴 ∈ Fin))
389, 37syl5 34 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → 𝐴 ∈ Fin))
391, 38syl5bi 241 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → ({𝑥𝐴𝐵 < 𝑥} = ∅ → 𝐴 ∈ Fin))
4039necon3bd 2956 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 𝐴 ∈ Fin → {𝑥𝐴𝐵 < 𝑥} ≠ ∅))
4140imp 406 . . 3 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ¬ 𝐴 ∈ Fin) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
4241an32s 648 . 2 (((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
43423impa 1108 1 ((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085  wal 1537   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  wss 3883  c0 4253   class class class wbr 5070  (class class class)co 7255  Fincfn 8691  cr 10801  0cc0 10802   < clt 10940  cle 10941  cn 11903  0cn0 12163  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator