Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nninfnub Structured version   Visualization version   GIF version

Theorem nninfnub 35532
Description: An infinite set of positive integers is unbounded above. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
nninfnub ((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nninfnub
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eq0 4232 . . . . . 6 ({𝑥𝐴𝐵 < 𝑥} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥})
2 breq2 5034 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐵 < 𝑥𝐵 < 𝑦))
32elrab 3588 . . . . . . . . . . 11 (𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} ↔ (𝑦𝐴𝐵 < 𝑦))
43notbii 323 . . . . . . . . . 10 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} ↔ ¬ (𝑦𝐴𝐵 < 𝑦))
5 imnan 403 . . . . . . . . . 10 ((𝑦𝐴 → ¬ 𝐵 < 𝑦) ↔ ¬ (𝑦𝐴𝐵 < 𝑦))
64, 5sylbb2 241 . . . . . . . . 9 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → (𝑦𝐴 → ¬ 𝐵 < 𝑦))
76alimi 1818 . . . . . . . 8 (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → ∀𝑦(𝑦𝐴 → ¬ 𝐵 < 𝑦))
8 df-ral 3058 . . . . . . . 8 (∀𝑦𝐴 ¬ 𝐵 < 𝑦 ↔ ∀𝑦(𝑦𝐴 → ¬ 𝐵 < 𝑦))
97, 8sylibr 237 . . . . . . 7 (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → ∀𝑦𝐴 ¬ 𝐵 < 𝑦)
10 ssel2 3872 . . . . . . . . . . . 12 ((𝐴 ⊆ ℕ ∧ 𝑦𝐴) → 𝑦 ∈ ℕ)
1110nnred 11731 . . . . . . . . . . 11 ((𝐴 ⊆ ℕ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
1211adantlr 715 . . . . . . . . . 10 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
13 nnre 11723 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1413ad2antlr 727 . . . . . . . . . 10 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → 𝐵 ∈ ℝ)
15 lenlt 10797 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦𝐵 ↔ ¬ 𝐵 < 𝑦))
1615biimprd 251 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝑦𝑦𝐵))
1712, 14, 16syl2anc 587 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → (¬ 𝐵 < 𝑦𝑦𝐵))
1817ralimdva 3091 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 ¬ 𝐵 < 𝑦 → ∀𝑦𝐴 𝑦𝐵))
19 fzfi 13431 . . . . . . . . . 10 (0...𝐵) ∈ Fin
2010nnnn0d 12036 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℕ ∧ 𝑦𝐴) → 𝑦 ∈ ℕ0)
2120adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → 𝑦 ∈ ℕ0)
2221adantr 484 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ℕ0)
23 nnnn0 11983 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
2423ad3antlr 731 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝐵 ∈ ℕ0)
25 simpr 488 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦𝐵)
2622, 24, 253jca 1129 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (𝑦 ∈ ℕ0𝐵 ∈ ℕ0𝑦𝐵))
2726ex 416 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → (𝑦𝐵 → (𝑦 ∈ ℕ0𝐵 ∈ ℕ0𝑦𝐵)))
28 elfz2nn0 13089 . . . . . . . . . . . . . 14 (𝑦 ∈ (0...𝐵) ↔ (𝑦 ∈ ℕ0𝐵 ∈ ℕ0𝑦𝐵))
2927, 28syl6ibr 255 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → (𝑦𝐵𝑦 ∈ (0...𝐵)))
3029ralimdva 3091 . . . . . . . . . . . 12 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 𝑦𝐵 → ∀𝑦𝐴 𝑦 ∈ (0...𝐵)))
3130imp 410 . . . . . . . . . . 11 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ∀𝑦𝐴 𝑦𝐵) → ∀𝑦𝐴 𝑦 ∈ (0...𝐵))
32 dfss3 3865 . . . . . . . . . . 11 (𝐴 ⊆ (0...𝐵) ↔ ∀𝑦𝐴 𝑦 ∈ (0...𝐵))
3331, 32sylibr 237 . . . . . . . . . 10 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ∀𝑦𝐴 𝑦𝐵) → 𝐴 ⊆ (0...𝐵))
34 ssfi 8772 . . . . . . . . . 10 (((0...𝐵) ∈ Fin ∧ 𝐴 ⊆ (0...𝐵)) → 𝐴 ∈ Fin)
3519, 33, 34sylancr 590 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ∀𝑦𝐴 𝑦𝐵) → 𝐴 ∈ Fin)
3635ex 416 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 𝑦𝐵𝐴 ∈ Fin))
3718, 36syld 47 . . . . . . 7 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 ¬ 𝐵 < 𝑦𝐴 ∈ Fin))
389, 37syl5 34 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → 𝐴 ∈ Fin))
391, 38syl5bi 245 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → ({𝑥𝐴𝐵 < 𝑥} = ∅ → 𝐴 ∈ Fin))
4039necon3bd 2948 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 𝐴 ∈ Fin → {𝑥𝐴𝐵 < 𝑥} ≠ ∅))
4140imp 410 . . 3 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ¬ 𝐴 ∈ Fin) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
4241an32s 652 . 2 (((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
43423impa 1111 1 ((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1088  wal 1540   = wceq 1542  wcel 2114  wne 2934  wral 3053  {crab 3057  wss 3843  c0 4211   class class class wbr 5030  (class class class)co 7170  Fincfn 8555  cr 10614  0cc0 10615   < clt 10753  cle 10754  cn 11716  0cn0 11976  ...cfz 12981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator