![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdom0 | Structured version Visualization version GIF version |
Description: The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003.) Avoid ax-pow 5359, ax-un 7712. (Revised by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
sdom0 | ⊢ ¬ 𝐴 ≺ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dom0 9090 | . . . 4 ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) | |
2 | en0 9001 | . . . 4 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
3 | 1, 2 | sylbb2 237 | . . 3 ⊢ (𝐴 ≼ ∅ → 𝐴 ≈ ∅) |
4 | iman 403 | . . 3 ⊢ ((𝐴 ≼ ∅ → 𝐴 ≈ ∅) ↔ ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅)) | |
5 | 3, 4 | mpbi 229 | . 2 ⊢ ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅) |
6 | brsdom 8959 | . 2 ⊢ (𝐴 ≺ ∅ ↔ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅)) | |
7 | 5, 6 | mtbir 323 | 1 ⊢ ¬ 𝐴 ≺ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∅c0 4320 class class class wbr 5144 ≈ cen 8924 ≼ cdom 8925 ≺ csdm 8926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5145 df-opab 5207 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-en 8928 df-dom 8929 df-sdom 8930 |
This theorem is referenced by: domunsn 9115 sdomsdomcardi 9953 canthp1lem1 10634 canthp1lem2 10635 rankcf 10759 |
Copyright terms: Public domain | W3C validator |