MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom0 Structured version   Visualization version   GIF version

Theorem sdom0 9127
Description: The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003.) Avoid ax-pow 5340, ax-un 7734. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
sdom0 ¬ 𝐴 ≺ ∅

Proof of Theorem sdom0
StepHypRef Expression
1 dom0 9121 . . . 4 (𝐴 ≼ ∅ ↔ 𝐴 = ∅)
2 en0 9037 . . . 4 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
31, 2sylbb2 238 . . 3 (𝐴 ≼ ∅ → 𝐴 ≈ ∅)
4 iman 401 . . 3 ((𝐴 ≼ ∅ → 𝐴 ≈ ∅) ↔ ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅))
53, 4mpbi 230 . 2 ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅)
6 brsdom 8994 . 2 (𝐴 ≺ ∅ ↔ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅))
75, 6mtbir 323 1 ¬ 𝐴 ≺ ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  c0 4313   class class class wbr 5124  cen 8961  cdom 8962  csdm 8963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-en 8965  df-dom 8966  df-sdom 8967
This theorem is referenced by:  domunsn  9146  sdomsdomcardi  9990  canthp1lem1  10671  canthp1lem2  10672  rankcf  10796
  Copyright terms: Public domain W3C validator