![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdom0 | Structured version Visualization version GIF version |
Description: The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003.) Avoid ax-pow 5383, ax-un 7770. (Revised by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
sdom0 | ⊢ ¬ 𝐴 ≺ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dom0 9168 | . . . 4 ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) | |
2 | en0 9078 | . . . 4 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
3 | 1, 2 | sylbb2 238 | . . 3 ⊢ (𝐴 ≼ ∅ → 𝐴 ≈ ∅) |
4 | iman 401 | . . 3 ⊢ ((𝐴 ≼ ∅ → 𝐴 ≈ ∅) ↔ ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅)) | |
5 | 3, 4 | mpbi 230 | . 2 ⊢ ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅) |
6 | brsdom 9035 | . 2 ⊢ (𝐴 ≺ ∅ ↔ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅)) | |
7 | 5, 6 | mtbir 323 | 1 ⊢ ¬ 𝐴 ≺ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∅c0 4352 class class class wbr 5166 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-en 9004 df-dom 9005 df-sdom 9006 |
This theorem is referenced by: domunsn 9193 sdomsdomcardi 10040 canthp1lem1 10721 canthp1lem2 10722 rankcf 10846 |
Copyright terms: Public domain | W3C validator |