MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom0 Structured version   Visualization version   GIF version

Theorem sdom0 9105
Description: The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003.) Avoid ax-pow 5354, ax-un 7719. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
sdom0 ¬ 𝐴 ≺ ∅

Proof of Theorem sdom0
StepHypRef Expression
1 dom0 9099 . . . 4 (𝐴 ≼ ∅ ↔ 𝐴 = ∅)
2 en0 9010 . . . 4 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
31, 2sylbb2 237 . . 3 (𝐴 ≼ ∅ → 𝐴 ≈ ∅)
4 iman 401 . . 3 ((𝐴 ≼ ∅ → 𝐴 ≈ ∅) ↔ ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅))
53, 4mpbi 229 . 2 ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅)
6 brsdom 8968 . 2 (𝐴 ≺ ∅ ↔ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅))
75, 6mtbir 323 1 ¬ 𝐴 ≺ ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  c0 4315   class class class wbr 5139  cen 8933  cdom 8934  csdm 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-en 8937  df-dom 8938  df-sdom 8939
This theorem is referenced by:  domunsn  9124  sdomsdomcardi  9963  canthp1lem1  10644  canthp1lem2  10645  rankcf  10769
  Copyright terms: Public domain W3C validator