![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdom0 | Structured version Visualization version GIF version |
Description: The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003.) Avoid ax-pow 5362, ax-un 7721. (Revised by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
sdom0 | ⊢ ¬ 𝐴 ≺ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dom0 9098 | . . . 4 ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) | |
2 | en0 9009 | . . . 4 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
3 | 1, 2 | sylbb2 237 | . . 3 ⊢ (𝐴 ≼ ∅ → 𝐴 ≈ ∅) |
4 | iman 402 | . . 3 ⊢ ((𝐴 ≼ ∅ → 𝐴 ≈ ∅) ↔ ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅)) | |
5 | 3, 4 | mpbi 229 | . 2 ⊢ ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅) |
6 | brsdom 8967 | . 2 ⊢ (𝐴 ≺ ∅ ↔ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅)) | |
7 | 5, 6 | mtbir 322 | 1 ⊢ ¬ 𝐴 ≺ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∅c0 4321 class class class wbr 5147 ≈ cen 8932 ≼ cdom 8933 ≺ csdm 8934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-en 8936 df-dom 8937 df-sdom 8938 |
This theorem is referenced by: domunsn 9123 sdomsdomcardi 9962 canthp1lem1 10643 canthp1lem2 10644 rankcf 10768 |
Copyright terms: Public domain | W3C validator |