MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom0 Structured version   Visualization version   GIF version

Theorem sdom0 9104
Description: The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003.) Avoid ax-pow 5362, ax-un 7721. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
sdom0 ¬ 𝐴 ≺ ∅

Proof of Theorem sdom0
StepHypRef Expression
1 dom0 9098 . . . 4 (𝐴 ≼ ∅ ↔ 𝐴 = ∅)
2 en0 9009 . . . 4 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
31, 2sylbb2 237 . . 3 (𝐴 ≼ ∅ → 𝐴 ≈ ∅)
4 iman 402 . . 3 ((𝐴 ≼ ∅ → 𝐴 ≈ ∅) ↔ ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅))
53, 4mpbi 229 . 2 ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅)
6 brsdom 8967 . 2 (𝐴 ≺ ∅ ↔ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅))
75, 6mtbir 322 1 ¬ 𝐴 ≺ ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  c0 4321   class class class wbr 5147  cen 8932  cdom 8933  csdm 8934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-en 8936  df-dom 8937  df-sdom 8938
This theorem is referenced by:  domunsn  9123  sdomsdomcardi  9962  canthp1lem1  10643  canthp1lem2  10644  rankcf  10768
  Copyright terms: Public domain W3C validator