| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdom0 | Structured version Visualization version GIF version | ||
| Description: The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003.) Avoid ax-pow 5320, ax-un 7711. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| sdom0 | ⊢ ¬ 𝐴 ≺ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dom0 9069 | . . . 4 ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) | |
| 2 | en0 8989 | . . . 4 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
| 3 | 1, 2 | sylbb2 238 | . . 3 ⊢ (𝐴 ≼ ∅ → 𝐴 ≈ ∅) |
| 4 | iman 401 | . . 3 ⊢ ((𝐴 ≼ ∅ → 𝐴 ≈ ∅) ↔ ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅)) | |
| 5 | 3, 4 | mpbi 230 | . 2 ⊢ ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅) |
| 6 | brsdom 8946 | . 2 ⊢ (𝐴 ≺ ∅ ↔ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅)) | |
| 7 | 5, 6 | mtbir 323 | 1 ⊢ ¬ 𝐴 ≺ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∅c0 4296 class class class wbr 5107 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-en 8919 df-dom 8920 df-sdom 8921 |
| This theorem is referenced by: domunsn 9091 sdomsdomcardi 9924 canthp1lem1 10605 canthp1lem2 10606 rankcf 10730 |
| Copyright terms: Public domain | W3C validator |