MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom0 Structured version   Visualization version   GIF version

Theorem sdom0 9033
Description: The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003.) Avoid ax-pow 5307, ax-un 7677. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
sdom0 ¬ 𝐴 ≺ ∅

Proof of Theorem sdom0
StepHypRef Expression
1 dom0 9029 . . . 4 (𝐴 ≼ ∅ ↔ 𝐴 = ∅)
2 en0 8951 . . . 4 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
31, 2sylbb2 238 . . 3 (𝐴 ≼ ∅ → 𝐴 ≈ ∅)
4 iman 401 . . 3 ((𝐴 ≼ ∅ → 𝐴 ≈ ∅) ↔ ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅))
53, 4mpbi 230 . 2 ¬ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅)
6 brsdom 8907 . 2 (𝐴 ≺ ∅ ↔ (𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅))
75, 6mtbir 323 1 ¬ 𝐴 ≺ ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  c0 4282   class class class wbr 5095  cen 8876  cdom 8877  csdm 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-en 8880  df-dom 8881  df-sdom 8882
This theorem is referenced by:  domunsn  9051  sdomsdomcardi  9875  canthp1lem1  10554  canthp1lem2  10555  rankcf  10679
  Copyright terms: Public domain W3C validator