![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlkcompbp | Structured version Visualization version GIF version |
Description: Basic properties of the components of a closed walk. (Contributed by AV, 23-May-2022.) |
Ref | Expression |
---|---|
clwlkcompbp.1 | ⊢ 𝐹 = (1st ‘𝑊) |
clwlkcompbp.2 | ⊢ 𝑃 = (2nd ‘𝑊) |
Ref | Expression |
---|---|
clwlkcompbp | ⊢ (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlkwlk 29709 | . . 3 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺)) | |
2 | wlkop 29562 | . . 3 ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) |
4 | eleq1 2814 | . . . 4 ⊢ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 → (𝑊 ∈ (ClWalks‘𝐺) ↔ 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∈ (ClWalks‘𝐺))) | |
5 | df-br 5146 | . . . 4 ⊢ ((1st ‘𝑊)(ClWalks‘𝐺)(2nd ‘𝑊) ↔ 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∈ (ClWalks‘𝐺)) | |
6 | 4, 5 | bitr4di 288 | . . 3 ⊢ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 → (𝑊 ∈ (ClWalks‘𝐺) ↔ (1st ‘𝑊)(ClWalks‘𝐺)(2nd ‘𝑊))) |
7 | isclwlk 29707 | . . . 4 ⊢ ((1st ‘𝑊)(ClWalks‘𝐺)(2nd ‘𝑊) ↔ ((1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊) ∧ ((2nd ‘𝑊)‘0) = ((2nd ‘𝑊)‘(♯‘(1st ‘𝑊))))) | |
8 | clwlkcompbp.1 | . . . . . 6 ⊢ 𝐹 = (1st ‘𝑊) | |
9 | clwlkcompbp.2 | . . . . . 6 ⊢ 𝑃 = (2nd ‘𝑊) | |
10 | 8, 9 | breq12i 5154 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 ↔ (1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊)) |
11 | 9 | fveq1i 6894 | . . . . . 6 ⊢ (𝑃‘0) = ((2nd ‘𝑊)‘0) |
12 | 8 | fveq2i 6896 | . . . . . . 7 ⊢ (♯‘𝐹) = (♯‘(1st ‘𝑊)) |
13 | 9, 12 | fveq12i 6899 | . . . . . 6 ⊢ (𝑃‘(♯‘𝐹)) = ((2nd ‘𝑊)‘(♯‘(1st ‘𝑊))) |
14 | 11, 13 | eqeq12i 2744 | . . . . 5 ⊢ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ ((2nd ‘𝑊)‘0) = ((2nd ‘𝑊)‘(♯‘(1st ‘𝑊)))) |
15 | 10, 14 | anbi12i 626 | . . . 4 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) ↔ ((1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊) ∧ ((2nd ‘𝑊)‘0) = ((2nd ‘𝑊)‘(♯‘(1st ‘𝑊))))) |
16 | 7, 15 | sylbb2 237 | . . 3 ⊢ ((1st ‘𝑊)(ClWalks‘𝐺)(2nd ‘𝑊) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
17 | 6, 16 | biimtrdi 252 | . 2 ⊢ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 → (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))) |
18 | 3, 17 | mpcom 38 | 1 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 〈cop 4629 class class class wbr 5145 ‘cfv 6546 1st c1st 7993 2nd c2nd 7994 0cc0 11149 ♯chash 14342 Walkscwlks 29530 ClWalkscclwlks 29704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fv 6554 df-1st 7995 df-2nd 7996 df-wlks 29533 df-clwlks 29705 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |