MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkcompbp Structured version   Visualization version   GIF version

Theorem clwlkcompbp 29307
Description: Basic properties of the components of a closed walk. (Contributed by AV, 23-May-2022.)
Hypotheses
Ref Expression
clwlkcompbp.1 𝐹 = (1st β€˜π‘Š)
clwlkcompbp.2 𝑃 = (2nd β€˜π‘Š)
Assertion
Ref Expression
clwlkcompbp (π‘Š ∈ (ClWalksβ€˜πΊ) β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))

Proof of Theorem clwlkcompbp
StepHypRef Expression
1 clwlkwlk 29300 . . 3 (π‘Š ∈ (ClWalksβ€˜πΊ) β†’ π‘Š ∈ (Walksβ€˜πΊ))
2 wlkop 29153 . . 3 (π‘Š ∈ (Walksβ€˜πΊ) β†’ π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
31, 2syl 17 . 2 (π‘Š ∈ (ClWalksβ€˜πΊ) β†’ π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
4 eleq1 2820 . . . 4 (π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ β†’ (π‘Š ∈ (ClWalksβ€˜πΊ) ↔ ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∈ (ClWalksβ€˜πΊ)))
5 df-br 5149 . . . 4 ((1st β€˜π‘Š)(ClWalksβ€˜πΊ)(2nd β€˜π‘Š) ↔ ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∈ (ClWalksβ€˜πΊ))
64, 5bitr4di 289 . . 3 (π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ β†’ (π‘Š ∈ (ClWalksβ€˜πΊ) ↔ (1st β€˜π‘Š)(ClWalksβ€˜πΊ)(2nd β€˜π‘Š)))
7 isclwlk 29298 . . . 4 ((1st β€˜π‘Š)(ClWalksβ€˜πΊ)(2nd β€˜π‘Š) ↔ ((1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š) ∧ ((2nd β€˜π‘Š)β€˜0) = ((2nd β€˜π‘Š)β€˜(β™―β€˜(1st β€˜π‘Š)))))
8 clwlkcompbp.1 . . . . . 6 𝐹 = (1st β€˜π‘Š)
9 clwlkcompbp.2 . . . . . 6 𝑃 = (2nd β€˜π‘Š)
108, 9breq12i 5157 . . . . 5 (𝐹(Walksβ€˜πΊ)𝑃 ↔ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š))
119fveq1i 6892 . . . . . 6 (π‘ƒβ€˜0) = ((2nd β€˜π‘Š)β€˜0)
128fveq2i 6894 . . . . . . 7 (β™―β€˜πΉ) = (β™―β€˜(1st β€˜π‘Š))
139, 12fveq12i 6897 . . . . . 6 (π‘ƒβ€˜(β™―β€˜πΉ)) = ((2nd β€˜π‘Š)β€˜(β™―β€˜(1st β€˜π‘Š)))
1411, 13eqeq12i 2749 . . . . 5 ((π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ)) ↔ ((2nd β€˜π‘Š)β€˜0) = ((2nd β€˜π‘Š)β€˜(β™―β€˜(1st β€˜π‘Š))))
1510, 14anbi12i 626 . . . 4 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))) ↔ ((1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š) ∧ ((2nd β€˜π‘Š)β€˜0) = ((2nd β€˜π‘Š)β€˜(β™―β€˜(1st β€˜π‘Š)))))
167, 15sylbb2 237 . . 3 ((1st β€˜π‘Š)(ClWalksβ€˜πΊ)(2nd β€˜π‘Š) β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
176, 16syl6bi 253 . 2 (π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ β†’ (π‘Š ∈ (ClWalksβ€˜πΊ) β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ)))))
183, 17mpcom 38 1 (π‘Š ∈ (ClWalksβ€˜πΊ) β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βŸ¨cop 4634   class class class wbr 5148  β€˜cfv 6543  1st c1st 7977  2nd c2nd 7978  0cc0 11114  β™―chash 14295  Walkscwlks 29121  ClWalkscclwlks 29295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-1st 7979  df-2nd 7980  df-wlks 29124  df-clwlks 29296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator