MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkcompbp Structured version   Visualization version   GIF version

Theorem clwlkcompbp 29758
Description: Basic properties of the components of a closed walk. (Contributed by AV, 23-May-2022.)
Hypotheses
Ref Expression
clwlkcompbp.1 𝐹 = (1st𝑊)
clwlkcompbp.2 𝑃 = (2nd𝑊)
Assertion
Ref Expression
clwlkcompbp (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))

Proof of Theorem clwlkcompbp
StepHypRef Expression
1 clwlkwlk 29751 . . 3 (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺))
2 wlkop 29604 . . 3 (𝑊 ∈ (Walks‘𝐺) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
31, 2syl 17 . 2 (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
4 eleq1 2819 . . . 4 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊 ∈ (ClWalks‘𝐺) ↔ ⟨(1st𝑊), (2nd𝑊)⟩ ∈ (ClWalks‘𝐺)))
5 df-br 5092 . . . 4 ((1st𝑊)(ClWalks‘𝐺)(2nd𝑊) ↔ ⟨(1st𝑊), (2nd𝑊)⟩ ∈ (ClWalks‘𝐺))
64, 5bitr4di 289 . . 3 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊 ∈ (ClWalks‘𝐺) ↔ (1st𝑊)(ClWalks‘𝐺)(2nd𝑊)))
7 isclwlk 29749 . . . 4 ((1st𝑊)(ClWalks‘𝐺)(2nd𝑊) ↔ ((1st𝑊)(Walks‘𝐺)(2nd𝑊) ∧ ((2nd𝑊)‘0) = ((2nd𝑊)‘(♯‘(1st𝑊)))))
8 clwlkcompbp.1 . . . . . 6 𝐹 = (1st𝑊)
9 clwlkcompbp.2 . . . . . 6 𝑃 = (2nd𝑊)
108, 9breq12i 5100 . . . . 5 (𝐹(Walks‘𝐺)𝑃 ↔ (1st𝑊)(Walks‘𝐺)(2nd𝑊))
119fveq1i 6823 . . . . . 6 (𝑃‘0) = ((2nd𝑊)‘0)
128fveq2i 6825 . . . . . . 7 (♯‘𝐹) = (♯‘(1st𝑊))
139, 12fveq12i 6828 . . . . . 6 (𝑃‘(♯‘𝐹)) = ((2nd𝑊)‘(♯‘(1st𝑊)))
1411, 13eqeq12i 2749 . . . . 5 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ ((2nd𝑊)‘0) = ((2nd𝑊)‘(♯‘(1st𝑊))))
1510, 14anbi12i 628 . . . 4 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) ↔ ((1st𝑊)(Walks‘𝐺)(2nd𝑊) ∧ ((2nd𝑊)‘0) = ((2nd𝑊)‘(♯‘(1st𝑊)))))
167, 15sylbb2 238 . . 3 ((1st𝑊)(ClWalks‘𝐺)(2nd𝑊) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
176, 16biimtrdi 253 . 2 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))
183, 17mpcom 38 1 (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4582   class class class wbr 5091  cfv 6481  1st c1st 7919  2nd c2nd 7920  0cc0 11003  chash 14234  Walkscwlks 29573  ClWalkscclwlks 29746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921  df-2nd 7922  df-wlks 29576  df-clwlks 29747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator