MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkcompbp Structured version   Visualization version   GIF version

Theorem clwlkcompbp 29716
Description: Basic properties of the components of a closed walk. (Contributed by AV, 23-May-2022.)
Hypotheses
Ref Expression
clwlkcompbp.1 𝐹 = (1st𝑊)
clwlkcompbp.2 𝑃 = (2nd𝑊)
Assertion
Ref Expression
clwlkcompbp (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))

Proof of Theorem clwlkcompbp
StepHypRef Expression
1 clwlkwlk 29709 . . 3 (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺))
2 wlkop 29562 . . 3 (𝑊 ∈ (Walks‘𝐺) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
31, 2syl 17 . 2 (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
4 eleq1 2814 . . . 4 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊 ∈ (ClWalks‘𝐺) ↔ ⟨(1st𝑊), (2nd𝑊)⟩ ∈ (ClWalks‘𝐺)))
5 df-br 5146 . . . 4 ((1st𝑊)(ClWalks‘𝐺)(2nd𝑊) ↔ ⟨(1st𝑊), (2nd𝑊)⟩ ∈ (ClWalks‘𝐺))
64, 5bitr4di 288 . . 3 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊 ∈ (ClWalks‘𝐺) ↔ (1st𝑊)(ClWalks‘𝐺)(2nd𝑊)))
7 isclwlk 29707 . . . 4 ((1st𝑊)(ClWalks‘𝐺)(2nd𝑊) ↔ ((1st𝑊)(Walks‘𝐺)(2nd𝑊) ∧ ((2nd𝑊)‘0) = ((2nd𝑊)‘(♯‘(1st𝑊)))))
8 clwlkcompbp.1 . . . . . 6 𝐹 = (1st𝑊)
9 clwlkcompbp.2 . . . . . 6 𝑃 = (2nd𝑊)
108, 9breq12i 5154 . . . . 5 (𝐹(Walks‘𝐺)𝑃 ↔ (1st𝑊)(Walks‘𝐺)(2nd𝑊))
119fveq1i 6894 . . . . . 6 (𝑃‘0) = ((2nd𝑊)‘0)
128fveq2i 6896 . . . . . . 7 (♯‘𝐹) = (♯‘(1st𝑊))
139, 12fveq12i 6899 . . . . . 6 (𝑃‘(♯‘𝐹)) = ((2nd𝑊)‘(♯‘(1st𝑊)))
1411, 13eqeq12i 2744 . . . . 5 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ ((2nd𝑊)‘0) = ((2nd𝑊)‘(♯‘(1st𝑊))))
1510, 14anbi12i 626 . . . 4 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) ↔ ((1st𝑊)(Walks‘𝐺)(2nd𝑊) ∧ ((2nd𝑊)‘0) = ((2nd𝑊)‘(♯‘(1st𝑊)))))
167, 15sylbb2 237 . . 3 ((1st𝑊)(ClWalks‘𝐺)(2nd𝑊) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
176, 16biimtrdi 252 . 2 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))
183, 17mpcom 38 1 (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  cop 4629   class class class wbr 5145  cfv 6546  1st c1st 7993  2nd c2nd 7994  0cc0 11149  chash 14342  Walkscwlks 29530  ClWalkscclwlks 29704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fv 6554  df-1st 7995  df-2nd 7996  df-wlks 29533  df-clwlks 29705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator