MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem3 Structured version   Visualization version   GIF version

Theorem tfrlem3 8359
Description: Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.)
Hypothesis
Ref Expression
tfrlem3.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem3 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤)))}
Distinct variable groups:   𝐴,𝑔   𝑓,𝑔,𝑤,𝑥,𝑦,𝑧,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑓)

Proof of Theorem tfrlem3
StepHypRef Expression
1 tfrlem3.1 . . 3 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 vex 3476 . . 3 𝑔 ∈ V
31, 2tfrlem3a 8358 . 2 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
43eqabi 2868 1 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤)))}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  {cab 2708  wral 3060  wrex 3069  cres 5670  Oncon0 6352   Fn wfn 6526  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3474  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5141  df-opab 5203  df-xp 5674  df-rel 5675  df-cnv 5676  df-co 5677  df-dm 5678  df-res 5680  df-iota 6483  df-fun 6533  df-fn 6534  df-fv 6539
This theorem is referenced by:  tfrlem4  8360  tfrlem8  8365  rdglem1  8396
  Copyright terms: Public domain W3C validator