| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdglem1 | Structured version Visualization version GIF version | ||
| Description: Lemma used with the recursive definition generator. This is a trivial lemma that just changes bound variables for later use. (Contributed by NM, 9-Apr-1995.) |
| Ref | Expression |
|---|---|
| rdglem1 | ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem3 8349 | . 2 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣 ∈ 𝑧 (𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣)))} |
| 3 | fveq2 6861 | . . . . . . 7 ⊢ (𝑣 = 𝑤 → (𝑔‘𝑣) = (𝑔‘𝑤)) | |
| 4 | reseq2 5948 | . . . . . . . 8 ⊢ (𝑣 = 𝑤 → (𝑔 ↾ 𝑣) = (𝑔 ↾ 𝑤)) | |
| 5 | 4 | fveq2d 6865 | . . . . . . 7 ⊢ (𝑣 = 𝑤 → (𝐺‘(𝑔 ↾ 𝑣)) = (𝐺‘(𝑔 ↾ 𝑤))) |
| 6 | 3, 5 | eqeq12d 2746 | . . . . . 6 ⊢ (𝑣 = 𝑤 → ((𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣)) ↔ (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
| 7 | 6 | cbvralvw 3216 | . . . . 5 ⊢ (∀𝑣 ∈ 𝑧 (𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣)) ↔ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤))) |
| 8 | 7 | anbi2i 623 | . . . 4 ⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑣 ∈ 𝑧 (𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
| 9 | 8 | rexbii 3077 | . . 3 ⊢ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣 ∈ 𝑧 (𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣))) ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
| 10 | 9 | abbii 2797 | . 2 ⊢ {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣 ∈ 𝑧 (𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))} |
| 11 | 2, 10 | eqtri 2753 | 1 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 {cab 2708 ∀wral 3045 ∃wrex 3054 ↾ cres 5643 Oncon0 6335 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: rdgseg 8393 |
| Copyright terms: Public domain | W3C validator |