Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rdglem1 | Structured version Visualization version GIF version |
Description: Lemma used with the recursive definition generator. This is a trivial lemma that just changes bound variables for later use. (Contributed by NM, 9-Apr-1995.) |
Ref | Expression |
---|---|
rdglem1 | ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem3 8209 | . 2 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣 ∈ 𝑧 (𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣)))} |
3 | fveq2 6774 | . . . . . . 7 ⊢ (𝑣 = 𝑤 → (𝑔‘𝑣) = (𝑔‘𝑤)) | |
4 | reseq2 5886 | . . . . . . . 8 ⊢ (𝑣 = 𝑤 → (𝑔 ↾ 𝑣) = (𝑔 ↾ 𝑤)) | |
5 | 4 | fveq2d 6778 | . . . . . . 7 ⊢ (𝑣 = 𝑤 → (𝐺‘(𝑔 ↾ 𝑣)) = (𝐺‘(𝑔 ↾ 𝑤))) |
6 | 3, 5 | eqeq12d 2754 | . . . . . 6 ⊢ (𝑣 = 𝑤 → ((𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣)) ↔ (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
7 | 6 | cbvralvw 3383 | . . . . 5 ⊢ (∀𝑣 ∈ 𝑧 (𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣)) ↔ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤))) |
8 | 7 | anbi2i 623 | . . . 4 ⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑣 ∈ 𝑧 (𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
9 | 8 | rexbii 3181 | . . 3 ⊢ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣 ∈ 𝑧 (𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣))) ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
10 | 9 | abbii 2808 | . 2 ⊢ {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣 ∈ 𝑧 (𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))} |
11 | 2, 10 | eqtri 2766 | 1 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 {cab 2715 ∀wral 3064 ∃wrex 3065 ↾ cres 5591 Oncon0 6266 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: rdgseg 8253 |
Copyright terms: Public domain | W3C validator |