![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rdglem1 | Structured version Visualization version GIF version |
Description: Lemma used with the recursive definition generator. This is a trivial lemma that just changes bound variables for later use. (Contributed by NM, 9-Apr-1995.) |
Ref | Expression |
---|---|
rdglem1 | ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem3 8434 | . 2 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣 ∈ 𝑧 (𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣)))} |
3 | fveq2 6920 | . . . . . . 7 ⊢ (𝑣 = 𝑤 → (𝑔‘𝑣) = (𝑔‘𝑤)) | |
4 | reseq2 6004 | . . . . . . . 8 ⊢ (𝑣 = 𝑤 → (𝑔 ↾ 𝑣) = (𝑔 ↾ 𝑤)) | |
5 | 4 | fveq2d 6924 | . . . . . . 7 ⊢ (𝑣 = 𝑤 → (𝐺‘(𝑔 ↾ 𝑣)) = (𝐺‘(𝑔 ↾ 𝑤))) |
6 | 3, 5 | eqeq12d 2756 | . . . . . 6 ⊢ (𝑣 = 𝑤 → ((𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣)) ↔ (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
7 | 6 | cbvralvw 3243 | . . . . 5 ⊢ (∀𝑣 ∈ 𝑧 (𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣)) ↔ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤))) |
8 | 7 | anbi2i 622 | . . . 4 ⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑣 ∈ 𝑧 (𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
9 | 8 | rexbii 3100 | . . 3 ⊢ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣 ∈ 𝑧 (𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣))) ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
10 | 9 | abbii 2812 | . 2 ⊢ {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣 ∈ 𝑧 (𝑔‘𝑣) = (𝐺‘(𝑔 ↾ 𝑣)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))} |
11 | 2, 10 | eqtri 2768 | 1 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 {cab 2717 ∀wral 3067 ∃wrex 3076 ↾ cres 5702 Oncon0 6395 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: rdgseg 8478 |
Copyright terms: Public domain | W3C validator |