MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdglem1 Structured version   Visualization version   GIF version

Theorem rdglem1 8334
Description: Lemma used with the recursive definition generator. This is a trivial lemma that just changes bound variables for later use. (Contributed by NM, 9-Apr-1995.)
Assertion
Ref Expression
rdglem1 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))}
Distinct variable groups:   𝑥,𝑦,𝑓,𝑔,𝑧,𝐺   𝑦,𝑤,𝐺,𝑧,𝑔

Proof of Theorem rdglem1
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
21tfrlem3 8297 . 2 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣𝑧 (𝑔𝑣) = (𝐺‘(𝑔𝑣)))}
3 fveq2 6822 . . . . . . 7 (𝑣 = 𝑤 → (𝑔𝑣) = (𝑔𝑤))
4 reseq2 5922 . . . . . . . 8 (𝑣 = 𝑤 → (𝑔𝑣) = (𝑔𝑤))
54fveq2d 6826 . . . . . . 7 (𝑣 = 𝑤 → (𝐺‘(𝑔𝑣)) = (𝐺‘(𝑔𝑤)))
63, 5eqeq12d 2747 . . . . . 6 (𝑣 = 𝑤 → ((𝑔𝑣) = (𝐺‘(𝑔𝑣)) ↔ (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
76cbvralvw 3210 . . . . 5 (∀𝑣𝑧 (𝑔𝑣) = (𝐺‘(𝑔𝑣)) ↔ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))
87anbi2i 623 . . . 4 ((𝑔 Fn 𝑧 ∧ ∀𝑣𝑧 (𝑔𝑣) = (𝐺‘(𝑔𝑣))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
98rexbii 3079 . . 3 (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣𝑧 (𝑔𝑣) = (𝐺‘(𝑔𝑣))) ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
109abbii 2798 . 2 {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣𝑧 (𝑔𝑣) = (𝐺‘(𝑔𝑣)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))}
112, 10eqtri 2754 1 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  {cab 2709  wral 3047  wrex 3056  cres 5616  Oncon0 6306   Fn wfn 6476  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  rdgseg  8341
  Copyright terms: Public domain W3C validator