Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdglem1 Structured version   Visualization version   GIF version

Theorem rdglem1 8062
 Description: Lemma used with the recursive definition generator. This is a trivial lemma that just changes bound variables for later use. (Contributed by NM, 9-Apr-1995.)
Assertion
Ref Expression
rdglem1 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))}
Distinct variable groups:   𝑥,𝑦,𝑓,𝑔,𝑧,𝐺   𝑦,𝑤,𝐺,𝑧,𝑔

Proof of Theorem rdglem1
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2759 . . 3 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
21tfrlem3 8025 . 2 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣𝑧 (𝑔𝑣) = (𝐺‘(𝑔𝑣)))}
3 fveq2 6659 . . . . . . 7 (𝑣 = 𝑤 → (𝑔𝑣) = (𝑔𝑤))
4 reseq2 5819 . . . . . . . 8 (𝑣 = 𝑤 → (𝑔𝑣) = (𝑔𝑤))
54fveq2d 6663 . . . . . . 7 (𝑣 = 𝑤 → (𝐺‘(𝑔𝑣)) = (𝐺‘(𝑔𝑤)))
63, 5eqeq12d 2775 . . . . . 6 (𝑣 = 𝑤 → ((𝑔𝑣) = (𝐺‘(𝑔𝑣)) ↔ (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
76cbvralvw 3362 . . . . 5 (∀𝑣𝑧 (𝑔𝑣) = (𝐺‘(𝑔𝑣)) ↔ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))
87anbi2i 626 . . . 4 ((𝑔 Fn 𝑧 ∧ ∀𝑣𝑧 (𝑔𝑣) = (𝐺‘(𝑔𝑣))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
98rexbii 3176 . . 3 (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣𝑧 (𝑔𝑣) = (𝐺‘(𝑔𝑣))) ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
109abbii 2824 . 2 {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑣𝑧 (𝑔𝑣) = (𝐺‘(𝑔𝑣)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))}
112, 10eqtri 2782 1 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))}
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 400   = wceq 1539  {cab 2736  ∀wral 3071  ∃wrex 3072   ↾ cres 5527  Oncon0 6170   Fn wfn 6331  ‘cfv 6336 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-un 3864  df-in 3866  df-ss 3876  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-res 5537  df-iota 6295  df-fun 6338  df-fn 6339  df-fv 6344 This theorem is referenced by:  rdgseg  8069
 Copyright terms: Public domain W3C validator