Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfrlem4 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. 𝐴 is the class of all "acceptable" functions, and 𝐹 is their union. First we show that an acceptable function is in fact a function. (Contributed by NM, 9-Apr-1995.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem4 | ⊢ (𝑔 ∈ 𝐴 → Fun 𝑔) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem3 8284 | . . 3 ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))} |
3 | 2 | abeq2i 2874 | . 2 ⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
4 | fnfun 6590 | . . . 4 ⊢ (𝑔 Fn 𝑧 → Fun 𝑔) | |
5 | 4 | adantr 482 | . . 3 ⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → Fun 𝑔) |
6 | 5 | rexlimivw 3145 | . 2 ⊢ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → Fun 𝑔) |
7 | 3, 6 | sylbi 216 | 1 ⊢ (𝑔 ∈ 𝐴 → Fun 𝑔) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 {cab 2714 ∀wral 3062 ∃wrex 3071 ↾ cres 5627 Oncon0 6307 Fun wfun 6478 Fn wfn 6479 ‘cfv 6484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-res 5637 df-iota 6436 df-fun 6486 df-fn 6487 df-fv 6492 |
This theorem is referenced by: tfrlem6 8288 |
Copyright terms: Public domain | W3C validator |