MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrtriv Structured version   Visualization version   GIF version

Theorem tgcgrtriv 25972
Description: Degenerate segments are congruent. Theorem 2.8 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrtriv.1 (𝜑𝐴𝑃)
tgcgrtriv.2 (𝜑𝐵𝑃)
Assertion
Ref Expression
tgcgrtriv (𝜑 → (𝐴 𝐴) = (𝐵 𝐵))

Proof of Theorem tgcgrtriv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . . 5 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . . 5 = (dist‘𝐺)
3 tkgeom.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 713 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐺 ∈ TarskiG)
6 tgcgrtriv.1 . . . . . 6 (𝜑𝐴𝑃)
76ad2antrr 713 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐴𝑃)
8 simplr 756 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝑥𝑃)
9 tgcgrtriv.2 . . . . . 6 (𝜑𝐵𝑃)
109ad2antrr 713 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐵𝑃)
11 simprr 760 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → (𝐴 𝑥) = (𝐵 𝐵))
121, 2, 3, 5, 7, 8, 10, 11axtgcgrid 25951 . . . 4 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐴 = 𝑥)
1312oveq2d 6992 . . 3 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → (𝐴 𝐴) = (𝐴 𝑥))
1413, 11eqtrd 2814 . 2 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → (𝐴 𝐴) = (𝐵 𝐵))
151, 2, 3, 4, 9, 6, 9, 9axtgsegcon 25952 . 2 (𝜑 → ∃𝑥𝑃 (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵)))
1614, 15r19.29a 3234 1 (𝜑 → (𝐴 𝐴) = (𝐵 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  cfv 6188  (class class class)co 6976  Basecbs 16339  distcds 16430  TarskiGcstrkg 25918  Itvcitv 25924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750  ax-nul 5067
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-iota 6152  df-fv 6196  df-ov 6979  df-trkgc 25936  df-trkgcb 25938  df-trkg 25941
This theorem is referenced by:  tgcgrextend  25973  tgcgrsub  25997  iscgrglt  26002  trgcgrg  26003  tgbtwnconn1lem3  26062  leg0  26080
  Copyright terms: Public domain W3C validator