| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgcgrtriv | Structured version Visualization version GIF version | ||
| Description: Degenerate segments are congruent. Theorem 2.8 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgcgrtriv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgcgrtriv.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| tgcgrtriv | ⊢ (𝜑 → (𝐴 − 𝐴) = (𝐵 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → 𝐺 ∈ TarskiG) |
| 6 | tgcgrtriv.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | 6 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → 𝐴 ∈ 𝑃) |
| 8 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → 𝑥 ∈ 𝑃) | |
| 9 | tgcgrtriv.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | 9 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → 𝐵 ∈ 𝑃) |
| 11 | simprr 772 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → (𝐴 − 𝑥) = (𝐵 − 𝐵)) | |
| 12 | 1, 2, 3, 5, 7, 8, 10, 11 | axtgcgrid 28407 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → 𝐴 = 𝑥) |
| 13 | 12 | oveq2d 7429 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → (𝐴 − 𝐴) = (𝐴 − 𝑥)) |
| 14 | 13, 11 | eqtrd 2769 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → (𝐴 − 𝐴) = (𝐵 − 𝐵)) |
| 15 | 1, 2, 3, 4, 9, 6, 9, 9 | axtgsegcon 28408 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) |
| 16 | 14, 15 | r19.29a 3149 | 1 ⊢ (𝜑 → (𝐴 − 𝐴) = (𝐵 − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 distcds 17282 TarskiGcstrkg 28371 Itvcitv 28377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-trkgc 28392 df-trkgcb 28394 df-trkg 28397 |
| This theorem is referenced by: tgcgrextend 28429 tgcgrsub 28453 iscgrglt 28458 trgcgrg 28459 tgbtwnconn1lem3 28518 leg0 28536 |
| Copyright terms: Public domain | W3C validator |