MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrtriv Structured version   Visualization version   GIF version

Theorem tgcgrtriv 26282
Description: Degenerate segments are congruent. Theorem 2.8 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrtriv.1 (𝜑𝐴𝑃)
tgcgrtriv.2 (𝜑𝐵𝑃)
Assertion
Ref Expression
tgcgrtriv (𝜑 → (𝐴 𝐴) = (𝐵 𝐵))

Proof of Theorem tgcgrtriv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . . 5 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . . 5 = (dist‘𝐺)
3 tkgeom.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 725 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐺 ∈ TarskiG)
6 tgcgrtriv.1 . . . . . 6 (𝜑𝐴𝑃)
76ad2antrr 725 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐴𝑃)
8 simplr 768 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝑥𝑃)
9 tgcgrtriv.2 . . . . . 6 (𝜑𝐵𝑃)
109ad2antrr 725 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐵𝑃)
11 simprr 772 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → (𝐴 𝑥) = (𝐵 𝐵))
121, 2, 3, 5, 7, 8, 10, 11axtgcgrid 26261 . . . 4 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐴 = 𝑥)
1312oveq2d 7155 . . 3 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → (𝐴 𝐴) = (𝐴 𝑥))
1413, 11eqtrd 2836 . 2 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → (𝐴 𝐴) = (𝐵 𝐵))
151, 2, 3, 4, 9, 6, 9, 9axtgsegcon 26262 . 2 (𝜑 → ∃𝑥𝑃 (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵)))
1614, 15r19.29a 3251 1 (𝜑 → (𝐴 𝐴) = (𝐵 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  cfv 6328  (class class class)co 7139  Basecbs 16479  distcds 16570  TarskiGcstrkg 26228  Itvcitv 26234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-nul 5177
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-iota 6287  df-fv 6336  df-ov 7142  df-trkgc 26246  df-trkgcb 26248  df-trkg 26251
This theorem is referenced by:  tgcgrextend  26283  tgcgrsub  26307  iscgrglt  26312  trgcgrg  26313  tgbtwnconn1lem3  26372  leg0  26390
  Copyright terms: Public domain W3C validator