![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgcgrtriv | Structured version Visualization version GIF version |
Description: Degenerate segments are congruent. Theorem 2.8 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgcgrtriv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgcgrtriv.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
tgcgrtriv | ⊢ (𝜑 → (𝐴 − 𝐴) = (𝐵 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → 𝐺 ∈ TarskiG) |
6 | tgcgrtriv.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → 𝐴 ∈ 𝑃) |
8 | simplr 769 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → 𝑥 ∈ 𝑃) | |
9 | tgcgrtriv.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
10 | 9 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → 𝐵 ∈ 𝑃) |
11 | simprr 773 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → (𝐴 − 𝑥) = (𝐵 − 𝐵)) | |
12 | 1, 2, 3, 5, 7, 8, 10, 11 | axtgcgrid 28497 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → 𝐴 = 𝑥) |
13 | 12 | oveq2d 7454 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → (𝐴 − 𝐴) = (𝐴 − 𝑥)) |
14 | 13, 11 | eqtrd 2777 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) → (𝐴 − 𝐴) = (𝐵 − 𝐵)) |
15 | 1, 2, 3, 4, 9, 6, 9, 9 | axtgsegcon 28498 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 − 𝑥) = (𝐵 − 𝐵))) |
16 | 14, 15 | r19.29a 3162 | 1 ⊢ (𝜑 → (𝐴 − 𝐴) = (𝐵 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 distcds 17316 TarskiGcstrkg 28461 Itvcitv 28467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5315 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-ov 7441 df-trkgc 28482 df-trkgcb 28484 df-trkg 28487 |
This theorem is referenced by: tgcgrextend 28519 tgcgrsub 28543 iscgrglt 28548 trgcgrg 28549 tgbtwnconn1lem3 28608 leg0 28626 |
Copyright terms: Public domain | W3C validator |