MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrtriv Structured version   Visualization version   GIF version

Theorem tgcgrtriv 26749
Description: Degenerate segments are congruent. Theorem 2.8 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrtriv.1 (𝜑𝐴𝑃)
tgcgrtriv.2 (𝜑𝐵𝑃)
Assertion
Ref Expression
tgcgrtriv (𝜑 → (𝐴 𝐴) = (𝐵 𝐵))

Proof of Theorem tgcgrtriv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . . 5 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . . 5 = (dist‘𝐺)
3 tkgeom.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 722 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐺 ∈ TarskiG)
6 tgcgrtriv.1 . . . . . 6 (𝜑𝐴𝑃)
76ad2antrr 722 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐴𝑃)
8 simplr 765 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝑥𝑃)
9 tgcgrtriv.2 . . . . . 6 (𝜑𝐵𝑃)
109ad2antrr 722 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐵𝑃)
11 simprr 769 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → (𝐴 𝑥) = (𝐵 𝐵))
121, 2, 3, 5, 7, 8, 10, 11axtgcgrid 26728 . . . 4 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐴 = 𝑥)
1312oveq2d 7271 . . 3 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → (𝐴 𝐴) = (𝐴 𝑥))
1413, 11eqtrd 2778 . 2 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → (𝐴 𝐴) = (𝐵 𝐵))
151, 2, 3, 4, 9, 6, 9, 9axtgsegcon 26729 . 2 (𝜑 → ∃𝑥𝑃 (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵)))
1614, 15r19.29a 3217 1 (𝜑 → (𝐴 𝐴) = (𝐵 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-trkgc 26713  df-trkgcb 26715  df-trkg 26718
This theorem is referenced by:  tgcgrextend  26750  tgcgrsub  26774  iscgrglt  26779  trgcgrg  26780  tgbtwnconn1lem3  26839  leg0  26857
  Copyright terms: Public domain W3C validator