MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrtriv Structured version   Visualization version   GIF version

Theorem tgcgrtriv 28411
Description: Degenerate segments are congruent. Theorem 2.8 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrtriv.1 (𝜑𝐴𝑃)
tgcgrtriv.2 (𝜑𝐵𝑃)
Assertion
Ref Expression
tgcgrtriv (𝜑 → (𝐴 𝐴) = (𝐵 𝐵))

Proof of Theorem tgcgrtriv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . . 5 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . . 5 = (dist‘𝐺)
3 tkgeom.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 726 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐺 ∈ TarskiG)
6 tgcgrtriv.1 . . . . . 6 (𝜑𝐴𝑃)
76ad2antrr 726 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐴𝑃)
8 simplr 768 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝑥𝑃)
9 tgcgrtriv.2 . . . . . 6 (𝜑𝐵𝑃)
109ad2antrr 726 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐵𝑃)
11 simprr 772 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → (𝐴 𝑥) = (𝐵 𝐵))
121, 2, 3, 5, 7, 8, 10, 11axtgcgrid 28390 . . . 4 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → 𝐴 = 𝑥)
1312oveq2d 7403 . . 3 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → (𝐴 𝐴) = (𝐴 𝑥))
1413, 11eqtrd 2764 . 2 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵))) → (𝐴 𝐴) = (𝐵 𝐵))
151, 2, 3, 4, 9, 6, 9, 9axtgsegcon 28391 . 2 (𝜑 → ∃𝑥𝑃 (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐵)))
1614, 15r19.29a 3141 1 (𝜑 → (𝐴 𝐴) = (𝐵 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  distcds 17229  TarskiGcstrkg 28354  Itvcitv 28360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-trkgc 28375  df-trkgcb 28377  df-trkg 28380
This theorem is referenced by:  tgcgrextend  28412  tgcgrsub  28436  iscgrglt  28441  trgcgrg  28442  tgbtwnconn1lem3  28501  leg0  28519
  Copyright terms: Public domain W3C validator