![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgcgrsub | Structured version Visualization version GIF version |
Description: Removing identical parts from the end of a line segment preserves congruence. Theorem 4.3 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
tgbtwncgr.p | β’ π = (BaseβπΊ) |
tgbtwncgr.m | β’ β = (distβπΊ) |
tgbtwncgr.i | β’ πΌ = (ItvβπΊ) |
tgbtwncgr.g | β’ (π β πΊ β TarskiG) |
tgbtwncgr.a | β’ (π β π΄ β π) |
tgbtwncgr.b | β’ (π β π΅ β π) |
tgbtwncgr.c | β’ (π β πΆ β π) |
tgbtwncgr.d | β’ (π β π· β π) |
tgcgrsub.e | β’ (π β πΈ β π) |
tgcgrsub.f | β’ (π β πΉ β π) |
tgcgrsub.1 | β’ (π β π΅ β (π΄πΌπΆ)) |
tgcgrsub.2 | β’ (π β πΈ β (π·πΌπΉ)) |
tgcgrsub.3 | β’ (π β (π΄ β πΆ) = (π· β πΉ)) |
tgcgrsub.4 | β’ (π β (π΅ β πΆ) = (πΈ β πΉ)) |
Ref | Expression |
---|---|
tgcgrsub | β’ (π β (π΄ β π΅) = (π· β πΈ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgbtwncgr.p | . 2 β’ π = (BaseβπΊ) | |
2 | tgbtwncgr.m | . 2 β’ β = (distβπΊ) | |
3 | tgbtwncgr.i | . 2 β’ πΌ = (ItvβπΊ) | |
4 | tgbtwncgr.g | . 2 β’ (π β πΊ β TarskiG) | |
5 | tgbtwncgr.b | . 2 β’ (π β π΅ β π) | |
6 | tgbtwncgr.a | . 2 β’ (π β π΄ β π) | |
7 | tgcgrsub.e | . 2 β’ (π β πΈ β π) | |
8 | tgbtwncgr.d | . 2 β’ (π β π· β π) | |
9 | tgbtwncgr.c | . . 3 β’ (π β πΆ β π) | |
10 | tgcgrsub.f | . . 3 β’ (π β πΉ β π) | |
11 | tgcgrsub.1 | . . 3 β’ (π β π΅ β (π΄πΌπΆ)) | |
12 | tgcgrsub.2 | . . 3 β’ (π β πΈ β (π·πΌπΉ)) | |
13 | tgcgrsub.3 | . . 3 β’ (π β (π΄ β πΆ) = (π· β πΉ)) | |
14 | tgcgrsub.4 | . . 3 β’ (π β (π΅ β πΆ) = (πΈ β πΉ)) | |
15 | 1, 2, 3, 4, 6, 8 | tgcgrtriv 28003 | . . 3 β’ (π β (π΄ β π΄) = (π· β π·)) |
16 | 1, 2, 3, 4, 6, 9, 8, 10, 13 | tgcgrcomlr 27999 | . . 3 β’ (π β (πΆ β π΄) = (πΉ β π·)) |
17 | 1, 2, 3, 4, 6, 5, 9, 6, 8, 7, 10, 8, 11, 12, 13, 14, 15, 16 | tgifscgr 28027 | . 2 β’ (π β (π΅ β π΄) = (πΈ β π·)) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | tgcgrcomlr 27999 | 1 β’ (π β (π΄ β π΅) = (π· β πΈ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 βcfv 6543 (class class class)co 7412 Basecbs 17149 distcds 17211 TarskiGcstrkg 27946 Itvcitv 27952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-oadd 8473 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-dju 9899 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-fz 13490 df-hash 14296 df-trkgc 27967 df-trkgb 27968 df-trkgcb 27969 df-trkg 27972 |
This theorem is referenced by: legtri3 28109 legbtwn 28113 tgcgrsub2 28114 colmid 28207 |
Copyright terms: Public domain | W3C validator |