![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leg0 | Structured version Visualization version GIF version |
Description: Degenerated (zero-length) segments are minimal. Proposition 5.11 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.) |
Ref | Expression |
---|---|
legval.p | ⊢ 𝑃 = (Base‘𝐺) |
legval.d | ⊢ − = (dist‘𝐺) |
legval.i | ⊢ 𝐼 = (Itv‘𝐺) |
legval.l | ⊢ ≤ = (≤G‘𝐺) |
legval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
legid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
legid.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
legtrd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
legtrd.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
Ref | Expression |
---|---|
leg0 | ⊢ (𝜑 → (𝐴 − 𝐴) ≤ (𝐶 − 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | legtrd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
2 | legval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | legval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
4 | legval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | legval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | legtrd.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
7 | 2, 3, 4, 5, 1, 6 | tgbtwntriv1 28308 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐶𝐼𝐷)) |
8 | legid.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | 2, 3, 4, 5, 8, 1 | tgcgrtriv 28301 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐴) = (𝐶 − 𝐶)) |
10 | eleq1 2817 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 ∈ (𝐶𝐼𝐷) ↔ 𝐶 ∈ (𝐶𝐼𝐷))) | |
11 | oveq2 7428 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝐶 − 𝑥) = (𝐶 − 𝐶)) | |
12 | 11 | eqeq2d 2739 | . . . . 5 ⊢ (𝑥 = 𝐶 → ((𝐴 − 𝐴) = (𝐶 − 𝑥) ↔ (𝐴 − 𝐴) = (𝐶 − 𝐶))) |
13 | 10, 12 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 − 𝐴) = (𝐶 − 𝑥)) ↔ (𝐶 ∈ (𝐶𝐼𝐷) ∧ (𝐴 − 𝐴) = (𝐶 − 𝐶)))) |
14 | 13 | rspcev 3609 | . . 3 ⊢ ((𝐶 ∈ 𝑃 ∧ (𝐶 ∈ (𝐶𝐼𝐷) ∧ (𝐴 − 𝐴) = (𝐶 − 𝐶))) → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 − 𝐴) = (𝐶 − 𝑥))) |
15 | 1, 7, 9, 14 | syl12anc 836 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 − 𝐴) = (𝐶 − 𝑥))) |
16 | legval.l | . . 3 ⊢ ≤ = (≤G‘𝐺) | |
17 | 2, 3, 4, 16, 5, 8, 8, 1, 6 | legov 28402 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐴) ≤ (𝐶 − 𝐷) ↔ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 − 𝐴) = (𝐶 − 𝑥)))) |
18 | 15, 17 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 − 𝐴) ≤ (𝐶 − 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3067 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 distcds 17242 TarskiGcstrkg 28244 Itvcitv 28250 ≤Gcleg 28399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9925 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-n0 12504 df-xnn0 12576 df-z 12590 df-uz 12854 df-fz 13518 df-fzo 13661 df-hash 14323 df-word 14498 df-concat 14554 df-s1 14579 df-s2 14832 df-s3 14833 df-trkgc 28265 df-trkgb 28266 df-trkgcb 28267 df-trkg 28270 df-cgrg 28328 df-leg 28400 |
This theorem is referenced by: legeq 28410 |
Copyright terms: Public domain | W3C validator |