Step | Hyp | Ref
| Expression |
1 | | trgcgrg.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
2 | | trgcgrg.m |
. . 3
⊢ − =
(dist‘𝐺) |
3 | | trgcgrg.r |
. . 3
⊢ ∼ =
(cgrG‘𝐺) |
4 | | trgcgrg.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | | iscgrglt.d |
. . 3
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
6 | | iscgrglt.a |
. . 3
⊢ (𝜑 → 𝐴:𝐷⟶𝑃) |
7 | | iscgrglt.b |
. . 3
⊢ (𝜑 → 𝐵:𝐷⟶𝑃) |
8 | 1, 2, 3, 4, 5, 6, 7 | iscgrgd 26872 |
. 2
⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
9 | | simp2 1136 |
. . . . 5
⊢ (((𝜑 ∧ (𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴)) ∧ ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)) ∧ 𝑖 < 𝑗) → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
10 | 9 | 3exp 1118 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴)) → (((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)) → (𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |
11 | 10 | ralimdvva 3114 |
. . 3
⊢ (𝜑 → (∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)) → ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |
12 | | breq1 5079 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (𝑘 < 𝑙 ↔ 𝑖 < 𝑙)) |
13 | | fveq2 6776 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → (𝐴‘𝑘) = (𝐴‘𝑖)) |
14 | 13 | oveq1d 7292 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐴‘𝑖) − (𝐴‘𝑙))) |
15 | | fveq2 6776 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → (𝐵‘𝑘) = (𝐵‘𝑖)) |
16 | 15 | oveq1d 7292 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → ((𝐵‘𝑘) − (𝐵‘𝑙)) = ((𝐵‘𝑖) − (𝐵‘𝑙))) |
17 | 14, 16 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)) ↔ ((𝐴‘𝑖) − (𝐴‘𝑙)) = ((𝐵‘𝑖) − (𝐵‘𝑙)))) |
18 | 12, 17 | imbi12d 345 |
. . . . 5
⊢ (𝑘 = 𝑖 → ((𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙))) ↔ (𝑖 < 𝑙 → ((𝐴‘𝑖) − (𝐴‘𝑙)) = ((𝐵‘𝑖) − (𝐵‘𝑙))))) |
19 | | breq2 5080 |
. . . . . 6
⊢ (𝑙 = 𝑗 → (𝑖 < 𝑙 ↔ 𝑖 < 𝑗)) |
20 | | fveq2 6776 |
. . . . . . . 8
⊢ (𝑙 = 𝑗 → (𝐴‘𝑙) = (𝐴‘𝑗)) |
21 | 20 | oveq2d 7293 |
. . . . . . 7
⊢ (𝑙 = 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑙)) = ((𝐴‘𝑖) − (𝐴‘𝑗))) |
22 | | fveq2 6776 |
. . . . . . . 8
⊢ (𝑙 = 𝑗 → (𝐵‘𝑙) = (𝐵‘𝑗)) |
23 | 22 | oveq2d 7293 |
. . . . . . 7
⊢ (𝑙 = 𝑗 → ((𝐵‘𝑖) − (𝐵‘𝑙)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
24 | 21, 23 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑙 = 𝑗 → (((𝐴‘𝑖) − (𝐴‘𝑙)) = ((𝐵‘𝑖) − (𝐵‘𝑙)) ↔ ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
25 | 19, 24 | imbi12d 345 |
. . . . 5
⊢ (𝑙 = 𝑗 → ((𝑖 < 𝑙 → ((𝐴‘𝑖) − (𝐴‘𝑙)) = ((𝐵‘𝑖) − (𝐵‘𝑙))) ↔ (𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |
26 | 18, 25 | cbvral2vw 3395 |
. . . 4
⊢
(∀𝑘 ∈
dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙))) ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
27 | | simpllr 773 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → 𝑖 ∈ dom 𝐴) |
28 | | simplr 766 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → 𝑗 ∈ dom 𝐴) |
29 | | simp-4r 781 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) |
30 | 27, 28, 29 | jca31 515 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → ((𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙))))) |
31 | | simpr 485 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗) |
32 | 18, 25 | rspc2va 3572 |
. . . . . . . . 9
⊢ (((𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) → (𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
33 | 30, 31, 32 | sylc 65 |
. . . . . . . 8
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
34 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Itv‘𝐺) =
(Itv‘𝐺) |
35 | 4 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → 𝐺 ∈ TarskiG) |
36 | 6 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝐴:𝐷⟶𝑃) |
37 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑖 ∈ dom 𝐴) |
38 | 36 | fdmd 6613 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → dom 𝐴 = 𝐷) |
39 | 37, 38 | eleqtrd 2841 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑖 ∈ 𝐷) |
40 | 36, 39 | ffvelrnd 6964 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → (𝐴‘𝑖) ∈ 𝑃) |
41 | 40 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → (𝐴‘𝑖) ∈ 𝑃) |
42 | 7 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝐵:𝐷⟶𝑃) |
43 | 42, 39 | ffvelrnd 6964 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → (𝐵‘𝑖) ∈ 𝑃) |
44 | 43 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → (𝐵‘𝑖) ∈ 𝑃) |
45 | 1, 2, 34, 35, 41, 44 | tgcgrtriv 26843 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → ((𝐴‘𝑖) − (𝐴‘𝑖)) = ((𝐵‘𝑖) − (𝐵‘𝑖))) |
46 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗) |
47 | 46 | fveq2d 6780 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → (𝐴‘𝑖) = (𝐴‘𝑗)) |
48 | 47 | oveq2d 7293 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → ((𝐴‘𝑖) − (𝐴‘𝑖)) = ((𝐴‘𝑖) − (𝐴‘𝑗))) |
49 | 46 | fveq2d 6780 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → (𝐵‘𝑖) = (𝐵‘𝑗)) |
50 | 49 | oveq2d 7293 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → ((𝐵‘𝑖) − (𝐵‘𝑖)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
51 | 45, 48, 50 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
52 | 51 | adantl3r 747 |
. . . . . . . 8
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
53 | 4 | ad4antr 729 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → 𝐺 ∈ TarskiG) |
54 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑗 ∈ dom 𝐴) |
55 | 54, 38 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑗 ∈ 𝐷) |
56 | 36, 55 | ffvelrnd 6964 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → (𝐴‘𝑗) ∈ 𝑃) |
57 | 56 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐴‘𝑗) ∈ 𝑃) |
58 | 57 | adantl3r 747 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐴‘𝑗) ∈ 𝑃) |
59 | 40 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐴‘𝑖) ∈ 𝑃) |
60 | 59 | adantl3r 747 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐴‘𝑖) ∈ 𝑃) |
61 | 42, 55 | ffvelrnd 6964 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → (𝐵‘𝑗) ∈ 𝑃) |
62 | 61 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐵‘𝑗) ∈ 𝑃) |
63 | 62 | adantl3r 747 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐵‘𝑗) ∈ 𝑃) |
64 | 43 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐵‘𝑖) ∈ 𝑃) |
65 | 64 | adantl3r 747 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐵‘𝑖) ∈ 𝑃) |
66 | | simplr 766 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → 𝑗 ∈ dom 𝐴) |
67 | | simpllr 773 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → 𝑖 ∈ dom 𝐴) |
68 | | simp-4r 781 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) |
69 | 66, 67, 68 | jca31 515 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → ((𝑗 ∈ dom 𝐴 ∧ 𝑖 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙))))) |
70 | | simpr 485 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → 𝑗 < 𝑖) |
71 | | breq1 5079 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (𝑘 < 𝑙 ↔ 𝑗 < 𝑙)) |
72 | | fveq2 6776 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝐴‘𝑘) = (𝐴‘𝑗)) |
73 | 72 | oveq1d 7292 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐴‘𝑗) − (𝐴‘𝑙))) |
74 | | fveq2 6776 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝐵‘𝑘) = (𝐵‘𝑗)) |
75 | 74 | oveq1d 7292 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → ((𝐵‘𝑘) − (𝐵‘𝑙)) = ((𝐵‘𝑗) − (𝐵‘𝑙))) |
76 | 73, 75 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)) ↔ ((𝐴‘𝑗) − (𝐴‘𝑙)) = ((𝐵‘𝑗) − (𝐵‘𝑙)))) |
77 | 71, 76 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → ((𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙))) ↔ (𝑗 < 𝑙 → ((𝐴‘𝑗) − (𝐴‘𝑙)) = ((𝐵‘𝑗) − (𝐵‘𝑙))))) |
78 | | breq2 5080 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑖 → (𝑗 < 𝑙 ↔ 𝑗 < 𝑖)) |
79 | | fveq2 6776 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑖 → (𝐴‘𝑙) = (𝐴‘𝑖)) |
80 | 79 | oveq2d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑖 → ((𝐴‘𝑗) − (𝐴‘𝑙)) = ((𝐴‘𝑗) − (𝐴‘𝑖))) |
81 | | fveq2 6776 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑖 → (𝐵‘𝑙) = (𝐵‘𝑖)) |
82 | 81 | oveq2d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑖 → ((𝐵‘𝑗) − (𝐵‘𝑙)) = ((𝐵‘𝑗) − (𝐵‘𝑖))) |
83 | 80, 82 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑖 → (((𝐴‘𝑗) − (𝐴‘𝑙)) = ((𝐵‘𝑗) − (𝐵‘𝑙)) ↔ ((𝐴‘𝑗) − (𝐴‘𝑖)) = ((𝐵‘𝑗) − (𝐵‘𝑖)))) |
84 | 78, 83 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑖 → ((𝑗 < 𝑙 → ((𝐴‘𝑗) − (𝐴‘𝑙)) = ((𝐵‘𝑗) − (𝐵‘𝑙))) ↔ (𝑗 < 𝑖 → ((𝐴‘𝑗) − (𝐴‘𝑖)) = ((𝐵‘𝑗) − (𝐵‘𝑖))))) |
85 | 77, 84 | rspc2va 3572 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ dom 𝐴 ∧ 𝑖 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) → (𝑗 < 𝑖 → ((𝐴‘𝑗) − (𝐴‘𝑖)) = ((𝐵‘𝑗) − (𝐵‘𝑖)))) |
86 | 69, 70, 85 | sylc 65 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → ((𝐴‘𝑗) − (𝐴‘𝑖)) = ((𝐵‘𝑗) − (𝐵‘𝑖))) |
87 | 1, 2, 34, 53, 58, 60, 63, 65, 86 | tgcgrcomlr 26839 |
. . . . . . . 8
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
88 | 6 | fdmd 6613 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝐴 = 𝐷) |
89 | 88, 5 | eqsstrd 3960 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐴 ⊆ ℝ) |
90 | 89 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → dom 𝐴 ⊆ ℝ) |
91 | | simplr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑖 ∈ dom 𝐴) |
92 | 90, 91 | sseldd 3923 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑖 ∈ ℝ) |
93 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑗 ∈ dom 𝐴) |
94 | 90, 93 | sseldd 3923 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑗 ∈ ℝ) |
95 | 92, 94 | lttri4d 11114 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → (𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖)) |
96 | 33, 52, 87, 95 | mpjao3dan 1430 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
97 | 96 | anasss 467 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ (𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴)) → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
98 | 97 | ralrimivva 3111 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) → ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
99 | 98 | ex 413 |
. . . 4
⊢ (𝜑 → (∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙))) → ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
100 | 26, 99 | syl5bir 242 |
. . 3
⊢ (𝜑 → (∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) → ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
101 | 11, 100 | impbid 211 |
. 2
⊢ (𝜑 → (∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)) ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |
102 | 8, 101 | bitrd 278 |
1
⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |