Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r1elssi | Structured version Visualization version GIF version |
Description: The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. One direction of r1elss 9563 that doesn't need 𝐴 to be a set. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1elssi | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | triun 5209 | . . . 4 ⊢ (∀𝑥 ∈ On Tr (𝑅1‘𝑥) → Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥)) | |
2 | r1tr 9533 | . . . . 5 ⊢ Tr (𝑅1‘𝑥) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ On → Tr (𝑅1‘𝑥)) |
4 | 1, 3 | mprg 3080 | . . 3 ⊢ Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥) |
5 | r1funlim 9523 | . . . . . 6 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
6 | 5 | simpli 484 | . . . . 5 ⊢ Fun 𝑅1 |
7 | funiunfv 7116 | . . . . 5 ⊢ (Fun 𝑅1 → ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On)) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On) |
9 | treq 5202 | . . . 4 ⊢ (∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On) → (Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ Tr ∪ (𝑅1 “ On))) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ (Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ Tr ∪ (𝑅1 “ On)) |
11 | 4, 10 | mpbi 229 | . 2 ⊢ Tr ∪ (𝑅1 “ On) |
12 | trss 5205 | . 2 ⊢ (Tr ∪ (𝑅1 “ On) → (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On))) | |
13 | 11, 12 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ∪ cuni 4845 ∪ ciun 4930 Tr wtr 5196 dom cdm 5589 “ cima 5592 Oncon0 6264 Lim wlim 6265 Fun wfun 6425 ‘cfv 6431 𝑅1cr1 9519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-om 7705 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-r1 9521 |
This theorem is referenced by: r1elss 9563 pwwf 9564 rankelb 9581 rankval3b 9583 r1pw 9602 rankuni2b 9610 tcwf 9640 tcrank 9641 hsmexlem4 10184 rankcf 10532 wfgru 10571 grur1 10575 |
Copyright terms: Public domain | W3C validator |