MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1elssi Structured version   Visualization version   GIF version

Theorem r1elssi 9734
Description: The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. One direction of r1elss 9735 that doesn't need 𝐴 to be a set. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1elssi (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))

Proof of Theorem r1elssi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 triun 5224 . . . 4 (∀𝑥 ∈ On Tr (𝑅1𝑥) → Tr 𝑥 ∈ On (𝑅1𝑥))
2 r1tr 9705 . . . . 5 Tr (𝑅1𝑥)
32a1i 11 . . . 4 (𝑥 ∈ On → Tr (𝑅1𝑥))
41, 3mprg 3050 . . 3 Tr 𝑥 ∈ On (𝑅1𝑥)
5 r1funlim 9695 . . . . . 6 (Fun 𝑅1 ∧ Lim dom 𝑅1)
65simpli 483 . . . . 5 Fun 𝑅1
7 funiunfv 7204 . . . . 5 (Fun 𝑅1 𝑥 ∈ On (𝑅1𝑥) = (𝑅1 “ On))
86, 7ax-mp 5 . . . 4 𝑥 ∈ On (𝑅1𝑥) = (𝑅1 “ On)
9 treq 5217 . . . 4 ( 𝑥 ∈ On (𝑅1𝑥) = (𝑅1 “ On) → (Tr 𝑥 ∈ On (𝑅1𝑥) ↔ Tr (𝑅1 “ On)))
108, 9ax-mp 5 . . 3 (Tr 𝑥 ∈ On (𝑅1𝑥) ↔ Tr (𝑅1 “ On))
114, 10mpbi 230 . 2 Tr (𝑅1 “ On)
12 trss 5220 . 2 (Tr (𝑅1 “ On) → (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On)))
1311, 12ax-mp 5 1 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wss 3911   cuni 4867   ciun 4951  Tr wtr 5209  dom cdm 5631  cima 5634  Oncon0 6320  Lim wlim 6321  Fun wfun 6493  cfv 6499  𝑅1cr1 9691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-r1 9693
This theorem is referenced by:  r1elss  9735  pwwf  9736  rankelb  9753  rankval3b  9755  r1pw  9774  rankuni2b  9782  tcwf  9812  tcrank  9813  hsmexlem4  10358  rankcf  10706  wfgru  10745  grur1  10749  trwf  44942  tcfr  44946  wfaxsep  44978  wfaxpow  44980
  Copyright terms: Public domain W3C validator