| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1elssi | Structured version Visualization version GIF version | ||
| Description: The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. One direction of r1elss 9702 that doesn't need 𝐴 to be a set. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1elssi | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | triun 5213 | . . . 4 ⊢ (∀𝑥 ∈ On Tr (𝑅1‘𝑥) → Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥)) | |
| 2 | r1tr 9672 | . . . . 5 ⊢ Tr (𝑅1‘𝑥) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ On → Tr (𝑅1‘𝑥)) |
| 4 | 1, 3 | mprg 3050 | . . 3 ⊢ Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥) |
| 5 | r1funlim 9662 | . . . . . 6 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 6 | 5 | simpli 483 | . . . . 5 ⊢ Fun 𝑅1 |
| 7 | funiunfv 7184 | . . . . 5 ⊢ (Fun 𝑅1 → ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On)) | |
| 8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On) |
| 9 | treq 5206 | . . . 4 ⊢ (∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On) → (Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ Tr ∪ (𝑅1 “ On))) | |
| 10 | 8, 9 | ax-mp 5 | . . 3 ⊢ (Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ Tr ∪ (𝑅1 “ On)) |
| 11 | 4, 10 | mpbi 230 | . 2 ⊢ Tr ∪ (𝑅1 “ On) |
| 12 | trss 5209 | . 2 ⊢ (Tr ∪ (𝑅1 “ On) → (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On))) | |
| 13 | 11, 12 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ∪ cuni 4858 ∪ ciun 4941 Tr wtr 5199 dom cdm 5619 “ cima 5622 Oncon0 6307 Lim wlim 6308 Fun wfun 6476 ‘cfv 6482 𝑅1cr1 9658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-r1 9660 |
| This theorem is referenced by: r1elss 9702 pwwf 9703 rankelb 9720 rankval3b 9722 r1pw 9741 rankuni2b 9749 tcwf 9779 tcrank 9780 hsmexlem4 10323 rankcf 10671 wfgru 10710 grur1 10714 trwf 44937 tcfr 44941 wfaxsep 44973 wfaxpow 44975 |
| Copyright terms: Public domain | W3C validator |