![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1elssi | Structured version Visualization version GIF version |
Description: The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. One direction of r1elss 9803 that doesn't need 𝐴 to be a set. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1elssi | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | triun 5279 | . . . 4 ⊢ (∀𝑥 ∈ On Tr (𝑅1‘𝑥) → Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥)) | |
2 | r1tr 9773 | . . . . 5 ⊢ Tr (𝑅1‘𝑥) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ On → Tr (𝑅1‘𝑥)) |
4 | 1, 3 | mprg 3065 | . . 3 ⊢ Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥) |
5 | r1funlim 9763 | . . . . . 6 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
6 | 5 | simpli 482 | . . . . 5 ⊢ Fun 𝑅1 |
7 | funiunfv 7249 | . . . . 5 ⊢ (Fun 𝑅1 → ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On)) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On) |
9 | treq 5272 | . . . 4 ⊢ (∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On) → (Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ Tr ∪ (𝑅1 “ On))) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ (Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ Tr ∪ (𝑅1 “ On)) |
11 | 4, 10 | mpbi 229 | . 2 ⊢ Tr ∪ (𝑅1 “ On) |
12 | trss 5275 | . 2 ⊢ (Tr ∪ (𝑅1 “ On) → (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On))) | |
13 | 11, 12 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 ⊆ wss 3947 ∪ cuni 4907 ∪ ciun 4996 Tr wtr 5264 dom cdm 5675 “ cima 5678 Oncon0 6363 Lim wlim 6364 Fun wfun 6536 ‘cfv 6542 𝑅1cr1 9759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-r1 9761 |
This theorem is referenced by: r1elss 9803 pwwf 9804 rankelb 9821 rankval3b 9823 r1pw 9842 rankuni2b 9850 tcwf 9880 tcrank 9881 hsmexlem4 10426 rankcf 10774 wfgru 10813 grur1 10817 |
Copyright terms: Public domain | W3C validator |