MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1elssi Structured version   Visualization version   GIF version

Theorem r1elssi 9698
Description: The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. One direction of r1elss 9699 that doesn't need 𝐴 to be a set. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1elssi (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))

Proof of Theorem r1elssi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 triun 5210 . . . 4 (∀𝑥 ∈ On Tr (𝑅1𝑥) → Tr 𝑥 ∈ On (𝑅1𝑥))
2 r1tr 9669 . . . . 5 Tr (𝑅1𝑥)
32a1i 11 . . . 4 (𝑥 ∈ On → Tr (𝑅1𝑥))
41, 3mprg 3053 . . 3 Tr 𝑥 ∈ On (𝑅1𝑥)
5 r1funlim 9659 . . . . . 6 (Fun 𝑅1 ∧ Lim dom 𝑅1)
65simpli 483 . . . . 5 Fun 𝑅1
7 funiunfv 7182 . . . . 5 (Fun 𝑅1 𝑥 ∈ On (𝑅1𝑥) = (𝑅1 “ On))
86, 7ax-mp 5 . . . 4 𝑥 ∈ On (𝑅1𝑥) = (𝑅1 “ On)
9 treq 5203 . . . 4 ( 𝑥 ∈ On (𝑅1𝑥) = (𝑅1 “ On) → (Tr 𝑥 ∈ On (𝑅1𝑥) ↔ Tr (𝑅1 “ On)))
108, 9ax-mp 5 . . 3 (Tr 𝑥 ∈ On (𝑅1𝑥) ↔ Tr (𝑅1 “ On))
114, 10mpbi 230 . 2 Tr (𝑅1 “ On)
12 trss 5206 . 2 (Tr (𝑅1 “ On) → (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On)))
1311, 12ax-mp 5 1 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wss 3897   cuni 4856   ciun 4939  Tr wtr 5196  dom cdm 5614  cima 5617  Oncon0 6306  Lim wlim 6307  Fun wfun 6475  cfv 6481  𝑅1cr1 9655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-r1 9657
This theorem is referenced by:  r1elss  9699  pwwf  9700  rankelb  9717  rankval3b  9719  r1pw  9738  rankuni2b  9746  tcwf  9776  tcrank  9777  hsmexlem4  10320  rankcf  10668  wfgru  10707  grur1  10711  trwf  45062  tcfr  45066  wfaxsep  45098  wfaxpow  45100
  Copyright terms: Public domain W3C validator