| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1elssi | Structured version Visualization version GIF version | ||
| Description: The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. One direction of r1elss 9825 that doesn't need 𝐴 to be a set. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1elssi | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | triun 5249 | . . . 4 ⊢ (∀𝑥 ∈ On Tr (𝑅1‘𝑥) → Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥)) | |
| 2 | r1tr 9795 | . . . . 5 ⊢ Tr (𝑅1‘𝑥) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ On → Tr (𝑅1‘𝑥)) |
| 4 | 1, 3 | mprg 3058 | . . 3 ⊢ Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥) |
| 5 | r1funlim 9785 | . . . . . 6 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 6 | 5 | simpli 483 | . . . . 5 ⊢ Fun 𝑅1 |
| 7 | funiunfv 7245 | . . . . 5 ⊢ (Fun 𝑅1 → ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On)) | |
| 8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On) |
| 9 | treq 5242 | . . . 4 ⊢ (∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On) → (Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ Tr ∪ (𝑅1 “ On))) | |
| 10 | 8, 9 | ax-mp 5 | . . 3 ⊢ (Tr ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ Tr ∪ (𝑅1 “ On)) |
| 11 | 4, 10 | mpbi 230 | . 2 ⊢ Tr ∪ (𝑅1 “ On) |
| 12 | trss 5245 | . 2 ⊢ (Tr ∪ (𝑅1 “ On) → (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On))) | |
| 13 | 11, 12 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ∪ cuni 4888 ∪ ciun 4972 Tr wtr 5234 dom cdm 5659 “ cima 5662 Oncon0 6357 Lim wlim 6358 Fun wfun 6530 ‘cfv 6536 𝑅1cr1 9781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-r1 9783 |
| This theorem is referenced by: r1elss 9825 pwwf 9826 rankelb 9843 rankval3b 9845 r1pw 9864 rankuni2b 9872 tcwf 9902 tcrank 9903 hsmexlem4 10448 rankcf 10796 wfgru 10835 grur1 10839 trwf 44951 tcfr 44955 wfaxsep 44987 wfaxpow 44989 |
| Copyright terms: Public domain | W3C validator |