MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1elssi Structured version   Visualization version   GIF version

Theorem r1elssi 9228
Description: The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. One direction of r1elss 9229 that doesn't need 𝐴 to be a set. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1elssi (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))

Proof of Theorem r1elssi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 triun 5177 . . . 4 (∀𝑥 ∈ On Tr (𝑅1𝑥) → Tr 𝑥 ∈ On (𝑅1𝑥))
2 r1tr 9199 . . . . 5 Tr (𝑅1𝑥)
32a1i 11 . . . 4 (𝑥 ∈ On → Tr (𝑅1𝑥))
41, 3mprg 3152 . . 3 Tr 𝑥 ∈ On (𝑅1𝑥)
5 r1funlim 9189 . . . . . 6 (Fun 𝑅1 ∧ Lim dom 𝑅1)
65simpli 486 . . . . 5 Fun 𝑅1
7 funiunfv 7001 . . . . 5 (Fun 𝑅1 𝑥 ∈ On (𝑅1𝑥) = (𝑅1 “ On))
86, 7ax-mp 5 . . . 4 𝑥 ∈ On (𝑅1𝑥) = (𝑅1 “ On)
9 treq 5170 . . . 4 ( 𝑥 ∈ On (𝑅1𝑥) = (𝑅1 “ On) → (Tr 𝑥 ∈ On (𝑅1𝑥) ↔ Tr (𝑅1 “ On)))
108, 9ax-mp 5 . . 3 (Tr 𝑥 ∈ On (𝑅1𝑥) ↔ Tr (𝑅1 “ On))
114, 10mpbi 232 . 2 Tr (𝑅1 “ On)
12 trss 5173 . 2 (Tr (𝑅1 “ On) → (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On)))
1311, 12ax-mp 5 1 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  wss 3935   cuni 4831   ciun 4911  Tr wtr 5164  dom cdm 5549  cima 5552  Oncon0 6185  Lim wlim 6186  Fun wfun 6343  cfv 6349  𝑅1cr1 9185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-r1 9187
This theorem is referenced by:  r1elss  9229  pwwf  9230  rankelb  9247  rankval3b  9249  r1pw  9268  rankuni2b  9276  tcwf  9306  tcrank  9307  hsmexlem4  9845  rankcf  10193  wfgru  10232  grur1  10236
  Copyright terms: Public domain W3C validator