MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trpredeq1d Structured version   Visualization version   GIF version

Theorem trpredeq1d 9401
Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.)
Hypothesis
Ref Expression
trpredeq1d.1 (𝜑𝑅 = 𝑆)
Assertion
Ref Expression
trpredeq1d (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋))

Proof of Theorem trpredeq1d
StepHypRef Expression
1 trpredeq1d.1 . 2 (𝜑𝑅 = 𝑆)
2 trpredeq1 9398 . 2 (𝑅 = 𝑆 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋))
31, 2syl 17 1 (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  TrPredctrpred 9395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-iota 6376  df-fv 6426  df-ov 7258  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-trpred 9396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator