![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trpredeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
trpredeq1d.1 | ⊢ (𝜑 → 𝑅 = 𝑆) |
Ref | Expression |
---|---|
trpredeq1d | ⊢ (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trpredeq1d.1 | . 2 ⊢ (𝜑 → 𝑅 = 𝑆) | |
2 | trpredeq1 32613 | . 2 ⊢ (𝑅 = 𝑆 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 TrPredctrpred 32610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-xp 5410 df-cnv 5412 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-iota 6150 df-fv 6194 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-trpred 32611 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |