Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trpredeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
trpredeq1d.1 | ⊢ (𝜑 → 𝑅 = 𝑆) |
Ref | Expression |
---|---|
trpredeq1d | ⊢ (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trpredeq1d.1 | . 2 ⊢ (𝜑 → 𝑅 = 𝑆) | |
2 | trpredeq1 9398 | . 2 ⊢ (𝑅 = 𝑆 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 TrPredctrpred 9395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-fv 6426 df-ov 7258 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-trpred 9396 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |