MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun Structured version   Visualization version   GIF version

Theorem fvun 6953
Description: Value of the union of two functions when the domains are separate. (Contributed by FL, 7-Nov-2011.)
Assertion
Ref Expression
fvun (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺)‘𝐴) = ((𝐹𝐴) ∪ (𝐺𝐴)))

Proof of Theorem fvun
StepHypRef Expression
1 funun 6564 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
2 funfv 6950 . . 3 (Fun (𝐹𝐺) → ((𝐹𝐺)‘𝐴) = ((𝐹𝐺) “ {𝐴}))
31, 2syl 17 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺)‘𝐴) = ((𝐹𝐺) “ {𝐴}))
4 imaundir 6125 . . . 4 ((𝐹𝐺) “ {𝐴}) = ((𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴}))
54a1i 11 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺) “ {𝐴}) = ((𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴})))
65unieqd 4886 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺) “ {𝐴}) = ((𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴})))
7 uniun 4896 . . 3 ((𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴})) = ( (𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴}))
8 funfv 6950 . . . . . . 7 (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ {𝐴}))
98eqcomd 2736 . . . . . 6 (Fun 𝐹 (𝐹 “ {𝐴}) = (𝐹𝐴))
10 funfv 6950 . . . . . . 7 (Fun 𝐺 → (𝐺𝐴) = (𝐺 “ {𝐴}))
1110eqcomd 2736 . . . . . 6 (Fun 𝐺 (𝐺 “ {𝐴}) = (𝐺𝐴))
129, 11anim12i 613 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → ( (𝐹 “ {𝐴}) = (𝐹𝐴) ∧ (𝐺 “ {𝐴}) = (𝐺𝐴)))
1312adantr 480 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ( (𝐹 “ {𝐴}) = (𝐹𝐴) ∧ (𝐺 “ {𝐴}) = (𝐺𝐴)))
14 uneq12 4128 . . . 4 (( (𝐹 “ {𝐴}) = (𝐹𝐴) ∧ (𝐺 “ {𝐴}) = (𝐺𝐴)) → ( (𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴})) = ((𝐹𝐴) ∪ (𝐺𝐴)))
1513, 14syl 17 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ( (𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴})) = ((𝐹𝐴) ∪ (𝐺𝐴)))
167, 15eqtrid 2777 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴})) = ((𝐹𝐴) ∪ (𝐺𝐴)))
173, 6, 163eqtrd 2769 1 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺)‘𝐴) = ((𝐹𝐴) ∪ (𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cun 3914  cin 3915  c0 4298  {csn 4591   cuni 4873  dom cdm 5640  cima 5643  Fun wfun 6507  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-fv 6521
This theorem is referenced by:  fvun1  6954  undifixp  8909
  Copyright terms: Public domain W3C validator