MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun Structured version   Visualization version   GIF version

Theorem fvun 6728
Description: Value of the union of two functions when the domains are separate. (Contributed by FL, 7-Nov-2011.)
Assertion
Ref Expression
fvun (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺)‘𝐴) = ((𝐹𝐴) ∪ (𝐺𝐴)))

Proof of Theorem fvun
StepHypRef Expression
1 funun 6370 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
2 funfv 6725 . . 3 (Fun (𝐹𝐺) → ((𝐹𝐺)‘𝐴) = ((𝐹𝐺) “ {𝐴}))
31, 2syl 17 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺)‘𝐴) = ((𝐹𝐺) “ {𝐴}))
4 imaundir 5976 . . . 4 ((𝐹𝐺) “ {𝐴}) = ((𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴}))
54a1i 11 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺) “ {𝐴}) = ((𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴})))
65unieqd 4814 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺) “ {𝐴}) = ((𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴})))
7 uniun 4823 . . 3 ((𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴})) = ( (𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴}))
8 funfv 6725 . . . . . . 7 (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ {𝐴}))
98eqcomd 2804 . . . . . 6 (Fun 𝐹 (𝐹 “ {𝐴}) = (𝐹𝐴))
10 funfv 6725 . . . . . . 7 (Fun 𝐺 → (𝐺𝐴) = (𝐺 “ {𝐴}))
1110eqcomd 2804 . . . . . 6 (Fun 𝐺 (𝐺 “ {𝐴}) = (𝐺𝐴))
129, 11anim12i 615 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → ( (𝐹 “ {𝐴}) = (𝐹𝐴) ∧ (𝐺 “ {𝐴}) = (𝐺𝐴)))
1312adantr 484 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ( (𝐹 “ {𝐴}) = (𝐹𝐴) ∧ (𝐺 “ {𝐴}) = (𝐺𝐴)))
14 uneq12 4085 . . . 4 (( (𝐹 “ {𝐴}) = (𝐹𝐴) ∧ (𝐺 “ {𝐴}) = (𝐺𝐴)) → ( (𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴})) = ((𝐹𝐴) ∪ (𝐺𝐴)))
1513, 14syl 17 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ( (𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴})) = ((𝐹𝐴) ∪ (𝐺𝐴)))
167, 15syl5eq 2845 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴})) = ((𝐹𝐴) ∪ (𝐺𝐴)))
173, 6, 163eqtrd 2837 1 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺)‘𝐴) = ((𝐹𝐴) ∪ (𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  cun 3879  cin 3880  c0 4243  {csn 4525   cuni 4800  dom cdm 5519  cima 5522  Fun wfun 6318  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332
This theorem is referenced by:  fvun1  6729  undifixp  8481
  Copyright terms: Public domain W3C validator