Proof of Theorem fvun
Step | Hyp | Ref
| Expression |
1 | | funun 6480 |
. . 3
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹 ∪ 𝐺)) |
2 | | funfv 6855 |
. . 3
⊢ (Fun
(𝐹 ∪ 𝐺) → ((𝐹 ∪ 𝐺)‘𝐴) = ∪ ((𝐹 ∪ 𝐺) “ {𝐴})) |
3 | 1, 2 | syl 17 |
. 2
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹 ∪ 𝐺)‘𝐴) = ∪ ((𝐹 ∪ 𝐺) “ {𝐴})) |
4 | | imaundir 6054 |
. . . 4
⊢ ((𝐹 ∪ 𝐺) “ {𝐴}) = ((𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴})) |
5 | 4 | a1i 11 |
. . 3
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹 ∪ 𝐺) “ {𝐴}) = ((𝐹 “ {𝐴}) ∪ (𝐺 “ {𝐴}))) |
6 | 5 | unieqd 4853 |
. 2
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ∪ ((𝐹
∪ 𝐺) “ {𝐴}) = ∪ ((𝐹
“ {𝐴}) ∪ (𝐺 “ {𝐴}))) |
7 | | uniun 4864 |
. . 3
⊢ ∪ ((𝐹
“ {𝐴}) ∪ (𝐺 “ {𝐴})) = (∪ (𝐹 “ {𝐴}) ∪ ∪ (𝐺 “ {𝐴})) |
8 | | funfv 6855 |
. . . . . . 7
⊢ (Fun
𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
9 | 8 | eqcomd 2744 |
. . . . . 6
⊢ (Fun
𝐹 → ∪ (𝐹
“ {𝐴}) = (𝐹‘𝐴)) |
10 | | funfv 6855 |
. . . . . . 7
⊢ (Fun
𝐺 → (𝐺‘𝐴) = ∪ (𝐺 “ {𝐴})) |
11 | 10 | eqcomd 2744 |
. . . . . 6
⊢ (Fun
𝐺 → ∪ (𝐺
“ {𝐴}) = (𝐺‘𝐴)) |
12 | 9, 11 | anim12i 613 |
. . . . 5
⊢ ((Fun
𝐹 ∧ Fun 𝐺) → (∪ (𝐹
“ {𝐴}) = (𝐹‘𝐴) ∧ ∪ (𝐺 “ {𝐴}) = (𝐺‘𝐴))) |
13 | 12 | adantr 481 |
. . . 4
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∪ (𝐹
“ {𝐴}) = (𝐹‘𝐴) ∧ ∪ (𝐺 “ {𝐴}) = (𝐺‘𝐴))) |
14 | | uneq12 4092 |
. . . 4
⊢ ((∪ (𝐹
“ {𝐴}) = (𝐹‘𝐴) ∧ ∪ (𝐺 “ {𝐴}) = (𝐺‘𝐴)) → (∪
(𝐹 “ {𝐴}) ∪ ∪ (𝐺
“ {𝐴})) = ((𝐹‘𝐴) ∪ (𝐺‘𝐴))) |
15 | 13, 14 | syl 17 |
. . 3
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∪ (𝐹
“ {𝐴}) ∪ ∪ (𝐺
“ {𝐴})) = ((𝐹‘𝐴) ∪ (𝐺‘𝐴))) |
16 | 7, 15 | eqtrid 2790 |
. 2
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ∪ ((𝐹
“ {𝐴}) ∪ (𝐺 “ {𝐴})) = ((𝐹‘𝐴) ∪ (𝐺‘𝐴))) |
17 | 3, 6, 16 | 3eqtrd 2782 |
1
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹 ∪ 𝐺)‘𝐴) = ((𝐹‘𝐴) ∪ (𝐺‘𝐴))) |