Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankprb | Structured version Visualization version GIF version |
Description: The rank of an unordered pair. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 10-Jun-2013.) |
Ref | Expression |
---|---|
rankprb | ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snwf 9671 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝐴} ∈ ∪ (𝑅1 “ On)) | |
2 | snwf 9671 | . . . 4 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → {𝐵} ∈ ∪ (𝑅1 “ On)) | |
3 | rankunb 9712 | . . . 4 ⊢ (({𝐴} ∈ ∪ (𝑅1 “ On) ∧ {𝐵} ∈ ∪ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐵}))) | |
4 | 1, 2, 3 | syl2an 597 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐵}))) |
5 | ranksnb 9689 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴)) | |
6 | ranksnb 9689 | . . . 4 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐵}) = suc (rank‘𝐵)) | |
7 | uneq12 4110 | . . . 4 ⊢ (((rank‘{𝐴}) = suc (rank‘𝐴) ∧ (rank‘{𝐵}) = suc (rank‘𝐵)) → ((rank‘{𝐴}) ∪ (rank‘{𝐵})) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵))) | |
8 | 5, 6, 7 | syl2an 597 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → ((rank‘{𝐴}) ∪ (rank‘{𝐵})) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵))) |
9 | 4, 8 | eqtrd 2777 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐵})) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵))) |
10 | df-pr 4581 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
11 | 10 | fveq2i 6833 | . 2 ⊢ (rank‘{𝐴, 𝐵}) = (rank‘({𝐴} ∪ {𝐵})) |
12 | rankon 9657 | . . . 4 ⊢ (rank‘𝐴) ∈ On | |
13 | 12 | onordi 6416 | . . 3 ⊢ Ord (rank‘𝐴) |
14 | rankon 9657 | . . . 4 ⊢ (rank‘𝐵) ∈ On | |
15 | 14 | onordi 6416 | . . 3 ⊢ Ord (rank‘𝐵) |
16 | ordsucun 7743 | . . 3 ⊢ ((Ord (rank‘𝐴) ∧ Ord (rank‘𝐵)) → suc ((rank‘𝐴) ∪ (rank‘𝐵)) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵))) | |
17 | 13, 15, 16 | mp2an 690 | . 2 ⊢ suc ((rank‘𝐴) ∪ (rank‘𝐵)) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵)) |
18 | 9, 11, 17 | 3eqtr4g 2802 | 1 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∪ cun 3900 {csn 4578 {cpr 4580 ∪ cuni 4857 “ cima 5628 Ord word 6306 Oncon0 6307 suc csuc 6309 ‘cfv 6484 𝑅1cr1 9624 rankcrnk 9625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-om 7786 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-r1 9626 df-rank 9627 |
This theorem is referenced by: rankopb 9714 rankpr 9719 r1limwun 10598 rankaltopb 34418 |
Copyright terms: Public domain | W3C validator |