MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankprb Structured version   Visualization version   GIF version

Theorem rankprb 9713
Description: The rank of an unordered pair. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
rankprb ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)))

Proof of Theorem rankprb
StepHypRef Expression
1 snwf 9671 . . . 4 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
2 snwf 9671 . . . 4 (𝐵 (𝑅1 “ On) → {𝐵} ∈ (𝑅1 “ On))
3 rankunb 9712 . . . 4 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐵})))
41, 2, 3syl2an 597 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐵})))
5 ranksnb 9689 . . . 4 (𝐴 (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴))
6 ranksnb 9689 . . . 4 (𝐵 (𝑅1 “ On) → (rank‘{𝐵}) = suc (rank‘𝐵))
7 uneq12 4110 . . . 4 (((rank‘{𝐴}) = suc (rank‘𝐴) ∧ (rank‘{𝐵}) = suc (rank‘𝐵)) → ((rank‘{𝐴}) ∪ (rank‘{𝐵})) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵)))
85, 6, 7syl2an 597 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ((rank‘{𝐴}) ∪ (rank‘{𝐵})) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵)))
94, 8eqtrd 2777 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐵})) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵)))
10 df-pr 4581 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
1110fveq2i 6833 . 2 (rank‘{𝐴, 𝐵}) = (rank‘({𝐴} ∪ {𝐵}))
12 rankon 9657 . . . 4 (rank‘𝐴) ∈ On
1312onordi 6416 . . 3 Ord (rank‘𝐴)
14 rankon 9657 . . . 4 (rank‘𝐵) ∈ On
1514onordi 6416 . . 3 Ord (rank‘𝐵)
16 ordsucun 7743 . . 3 ((Ord (rank‘𝐴) ∧ Ord (rank‘𝐵)) → suc ((rank‘𝐴) ∪ (rank‘𝐵)) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵)))
1713, 15, 16mp2an 690 . 2 suc ((rank‘𝐴) ∪ (rank‘𝐵)) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵))
189, 11, 173eqtr4g 2802 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  cun 3900  {csn 4578  {cpr 4580   cuni 4857  cima 5628  Ord word 6306  Oncon0 6307  suc csuc 6309  cfv 6484  𝑅1cr1 9624  rankcrnk 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-ov 7345  df-om 7786  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-r1 9626  df-rank 9627
This theorem is referenced by:  rankopb  9714  rankpr  9719  r1limwun  10598  rankaltopb  34418
  Copyright terms: Public domain W3C validator