MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankprb Structured version   Visualization version   GIF version

Theorem rankprb 9264
Description: The rank of an unordered pair. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
rankprb ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)))

Proof of Theorem rankprb
StepHypRef Expression
1 snwf 9222 . . . 4 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
2 snwf 9222 . . . 4 (𝐵 (𝑅1 “ On) → {𝐵} ∈ (𝑅1 “ On))
3 rankunb 9263 . . . 4 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐵})))
41, 2, 3syl2an 598 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐵})))
5 ranksnb 9240 . . . 4 (𝐴 (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴))
6 ranksnb 9240 . . . 4 (𝐵 (𝑅1 “ On) → (rank‘{𝐵}) = suc (rank‘𝐵))
7 uneq12 4085 . . . 4 (((rank‘{𝐴}) = suc (rank‘𝐴) ∧ (rank‘{𝐵}) = suc (rank‘𝐵)) → ((rank‘{𝐴}) ∪ (rank‘{𝐵})) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵)))
85, 6, 7syl2an 598 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ((rank‘{𝐴}) ∪ (rank‘{𝐵})) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵)))
94, 8eqtrd 2833 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐵})) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵)))
10 df-pr 4528 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
1110fveq2i 6648 . 2 (rank‘{𝐴, 𝐵}) = (rank‘({𝐴} ∪ {𝐵}))
12 rankon 9208 . . . 4 (rank‘𝐴) ∈ On
1312onordi 6263 . . 3 Ord (rank‘𝐴)
14 rankon 9208 . . . 4 (rank‘𝐵) ∈ On
1514onordi 6263 . . 3 Ord (rank‘𝐵)
16 ordsucun 7520 . . 3 ((Ord (rank‘𝐴) ∧ Ord (rank‘𝐵)) → suc ((rank‘𝐴) ∪ (rank‘𝐵)) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵)))
1713, 15, 16mp2an 691 . 2 suc ((rank‘𝐴) ∪ (rank‘𝐵)) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵))
189, 11, 173eqtr4g 2858 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cun 3879  {csn 4525  {cpr 4527   cuni 4800  cima 5522  Ord word 6158  Oncon0 6159  suc csuc 6161  cfv 6324  𝑅1cr1 9175  rankcrnk 9176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-r1 9177  df-rank 9178
This theorem is referenced by:  rankopb  9265  rankpr  9270  r1limwun  10147  rankaltopb  33553
  Copyright terms: Public domain W3C validator