Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankprb | Structured version Visualization version GIF version |
Description: The rank of an unordered pair. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 10-Jun-2013.) |
Ref | Expression |
---|---|
rankprb | ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snwf 9498 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝐴} ∈ ∪ (𝑅1 “ On)) | |
2 | snwf 9498 | . . . 4 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → {𝐵} ∈ ∪ (𝑅1 “ On)) | |
3 | rankunb 9539 | . . . 4 ⊢ (({𝐴} ∈ ∪ (𝑅1 “ On) ∧ {𝐵} ∈ ∪ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐵}))) | |
4 | 1, 2, 3 | syl2an 595 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐵}))) |
5 | ranksnb 9516 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴)) | |
6 | ranksnb 9516 | . . . 4 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐵}) = suc (rank‘𝐵)) | |
7 | uneq12 4088 | . . . 4 ⊢ (((rank‘{𝐴}) = suc (rank‘𝐴) ∧ (rank‘{𝐵}) = suc (rank‘𝐵)) → ((rank‘{𝐴}) ∪ (rank‘{𝐵})) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵))) | |
8 | 5, 6, 7 | syl2an 595 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → ((rank‘{𝐴}) ∪ (rank‘{𝐵})) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵))) |
9 | 4, 8 | eqtrd 2778 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐵})) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵))) |
10 | df-pr 4561 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
11 | 10 | fveq2i 6759 | . 2 ⊢ (rank‘{𝐴, 𝐵}) = (rank‘({𝐴} ∪ {𝐵})) |
12 | rankon 9484 | . . . 4 ⊢ (rank‘𝐴) ∈ On | |
13 | 12 | onordi 6356 | . . 3 ⊢ Ord (rank‘𝐴) |
14 | rankon 9484 | . . . 4 ⊢ (rank‘𝐵) ∈ On | |
15 | 14 | onordi 6356 | . . 3 ⊢ Ord (rank‘𝐵) |
16 | ordsucun 7647 | . . 3 ⊢ ((Ord (rank‘𝐴) ∧ Ord (rank‘𝐵)) → suc ((rank‘𝐴) ∪ (rank‘𝐵)) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵))) | |
17 | 13, 15, 16 | mp2an 688 | . 2 ⊢ suc ((rank‘𝐴) ∪ (rank‘𝐵)) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵)) |
18 | 9, 11, 17 | 3eqtr4g 2804 | 1 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 {csn 4558 {cpr 4560 ∪ cuni 4836 “ cima 5583 Ord word 6250 Oncon0 6251 suc csuc 6253 ‘cfv 6418 𝑅1cr1 9451 rankcrnk 9452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 df-rank 9454 |
This theorem is referenced by: rankopb 9541 rankpr 9546 r1limwun 10423 rankaltopb 34208 |
Copyright terms: Public domain | W3C validator |