![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankprb | Structured version Visualization version GIF version |
Description: The rank of an unordered pair. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 10-Jun-2013.) |
Ref | Expression |
---|---|
rankprb | β’ ((π΄ β βͺ (π 1 β On) β§ π΅ β βͺ (π 1 β On)) β (rankβ{π΄, π΅}) = suc ((rankβπ΄) βͺ (rankβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snwf 9806 | . . . 4 β’ (π΄ β βͺ (π 1 β On) β {π΄} β βͺ (π 1 β On)) | |
2 | snwf 9806 | . . . 4 β’ (π΅ β βͺ (π 1 β On) β {π΅} β βͺ (π 1 β On)) | |
3 | rankunb 9847 | . . . 4 β’ (({π΄} β βͺ (π 1 β On) β§ {π΅} β βͺ (π 1 β On)) β (rankβ({π΄} βͺ {π΅})) = ((rankβ{π΄}) βͺ (rankβ{π΅}))) | |
4 | 1, 2, 3 | syl2an 596 | . . 3 β’ ((π΄ β βͺ (π 1 β On) β§ π΅ β βͺ (π 1 β On)) β (rankβ({π΄} βͺ {π΅})) = ((rankβ{π΄}) βͺ (rankβ{π΅}))) |
5 | ranksnb 9824 | . . . 4 β’ (π΄ β βͺ (π 1 β On) β (rankβ{π΄}) = suc (rankβπ΄)) | |
6 | ranksnb 9824 | . . . 4 β’ (π΅ β βͺ (π 1 β On) β (rankβ{π΅}) = suc (rankβπ΅)) | |
7 | uneq12 4158 | . . . 4 β’ (((rankβ{π΄}) = suc (rankβπ΄) β§ (rankβ{π΅}) = suc (rankβπ΅)) β ((rankβ{π΄}) βͺ (rankβ{π΅})) = (suc (rankβπ΄) βͺ suc (rankβπ΅))) | |
8 | 5, 6, 7 | syl2an 596 | . . 3 β’ ((π΄ β βͺ (π 1 β On) β§ π΅ β βͺ (π 1 β On)) β ((rankβ{π΄}) βͺ (rankβ{π΅})) = (suc (rankβπ΄) βͺ suc (rankβπ΅))) |
9 | 4, 8 | eqtrd 2772 | . 2 β’ ((π΄ β βͺ (π 1 β On) β§ π΅ β βͺ (π 1 β On)) β (rankβ({π΄} βͺ {π΅})) = (suc (rankβπ΄) βͺ suc (rankβπ΅))) |
10 | df-pr 4631 | . . 3 β’ {π΄, π΅} = ({π΄} βͺ {π΅}) | |
11 | 10 | fveq2i 6894 | . 2 β’ (rankβ{π΄, π΅}) = (rankβ({π΄} βͺ {π΅})) |
12 | rankon 9792 | . . . 4 β’ (rankβπ΄) β On | |
13 | 12 | onordi 6475 | . . 3 β’ Ord (rankβπ΄) |
14 | rankon 9792 | . . . 4 β’ (rankβπ΅) β On | |
15 | 14 | onordi 6475 | . . 3 β’ Ord (rankβπ΅) |
16 | ordsucun 7815 | . . 3 β’ ((Ord (rankβπ΄) β§ Ord (rankβπ΅)) β suc ((rankβπ΄) βͺ (rankβπ΅)) = (suc (rankβπ΄) βͺ suc (rankβπ΅))) | |
17 | 13, 15, 16 | mp2an 690 | . 2 β’ suc ((rankβπ΄) βͺ (rankβπ΅)) = (suc (rankβπ΄) βͺ suc (rankβπ΅)) |
18 | 9, 11, 17 | 3eqtr4g 2797 | 1 β’ ((π΄ β βͺ (π 1 β On) β§ π΅ β βͺ (π 1 β On)) β (rankβ{π΄, π΅}) = suc ((rankβπ΄) βͺ (rankβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βͺ cun 3946 {csn 4628 {cpr 4630 βͺ cuni 4908 β cima 5679 Ord word 6363 Oncon0 6364 suc csuc 6366 βcfv 6543 π 1cr1 9759 rankcrnk 9760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-r1 9761 df-rank 9762 |
This theorem is referenced by: rankopb 9849 rankpr 9854 r1limwun 10733 rankaltopb 35243 |
Copyright terms: Public domain | W3C validator |