|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rankprb | Structured version Visualization version GIF version | ||
| Description: The rank of an unordered pair. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 10-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| rankprb | ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snwf 9849 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝐴} ∈ ∪ (𝑅1 “ On)) | |
| 2 | snwf 9849 | . . . 4 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → {𝐵} ∈ ∪ (𝑅1 “ On)) | |
| 3 | rankunb 9890 | . . . 4 ⊢ (({𝐴} ∈ ∪ (𝑅1 “ On) ∧ {𝐵} ∈ ∪ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐵}))) | |
| 4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐵}))) | 
| 5 | ranksnb 9867 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴)) | |
| 6 | ranksnb 9867 | . . . 4 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐵}) = suc (rank‘𝐵)) | |
| 7 | uneq12 4163 | . . . 4 ⊢ (((rank‘{𝐴}) = suc (rank‘𝐴) ∧ (rank‘{𝐵}) = suc (rank‘𝐵)) → ((rank‘{𝐴}) ∪ (rank‘{𝐵})) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵))) | |
| 8 | 5, 6, 7 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → ((rank‘{𝐴}) ∪ (rank‘{𝐵})) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵))) | 
| 9 | 4, 8 | eqtrd 2777 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐵})) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵))) | 
| 10 | df-pr 4629 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 11 | 10 | fveq2i 6909 | . 2 ⊢ (rank‘{𝐴, 𝐵}) = (rank‘({𝐴} ∪ {𝐵})) | 
| 12 | rankon 9835 | . . . 4 ⊢ (rank‘𝐴) ∈ On | |
| 13 | 12 | onordi 6495 | . . 3 ⊢ Ord (rank‘𝐴) | 
| 14 | rankon 9835 | . . . 4 ⊢ (rank‘𝐵) ∈ On | |
| 15 | 14 | onordi 6495 | . . 3 ⊢ Ord (rank‘𝐵) | 
| 16 | ordsucun 7845 | . . 3 ⊢ ((Ord (rank‘𝐴) ∧ Ord (rank‘𝐵)) → suc ((rank‘𝐴) ∪ (rank‘𝐵)) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵))) | |
| 17 | 13, 15, 16 | mp2an 692 | . 2 ⊢ suc ((rank‘𝐴) ∪ (rank‘𝐵)) = (suc (rank‘𝐴) ∪ suc (rank‘𝐵)) | 
| 18 | 9, 11, 17 | 3eqtr4g 2802 | 1 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cun 3949 {csn 4626 {cpr 4628 ∪ cuni 4907 “ cima 5688 Ord word 6383 Oncon0 6384 suc csuc 6386 ‘cfv 6561 𝑅1cr1 9802 rankcrnk 9803 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-r1 9804 df-rank 9805 | 
| This theorem is referenced by: rankopb 9892 rankpr 9897 r1limwun 10776 rankaltopb 35980 | 
| Copyright terms: Public domain | W3C validator |