MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnun Structured version   Visualization version   GIF version

Theorem fnun 6600
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
Assertion
Ref Expression
fnun (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))

Proof of Theorem fnun
StepHypRef Expression
1 df-fn 6489 . . 3 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
2 df-fn 6489 . . 3 (𝐺 Fn 𝐵 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐵))
3 ineq12 4164 . . . . . . . . . . 11 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
43eqeq1d 2735 . . . . . . . . . 10 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ (𝐴𝐵) = ∅))
54anbi2d 630 . . . . . . . . 9 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) ↔ ((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐴𝐵) = ∅)))
6 funun 6532 . . . . . . . . 9 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
75, 6biimtrrdi 254 . . . . . . . 8 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐴𝐵) = ∅) → Fun (𝐹𝐺)))
8 dmun 5854 . . . . . . . . 9 dom (𝐹𝐺) = (dom 𝐹 ∪ dom 𝐺)
9 uneq12 4112 . . . . . . . . 9 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (dom 𝐹 ∪ dom 𝐺) = (𝐴𝐵))
108, 9eqtrid 2780 . . . . . . . 8 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → dom (𝐹𝐺) = (𝐴𝐵))
117, 10jctird 526 . . . . . . 7 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐴𝐵) = ∅) → (Fun (𝐹𝐺) ∧ dom (𝐹𝐺) = (𝐴𝐵))))
12 df-fn 6489 . . . . . . 7 ((𝐹𝐺) Fn (𝐴𝐵) ↔ (Fun (𝐹𝐺) ∧ dom (𝐹𝐺) = (𝐴𝐵)))
1311, 12imbitrrdi 252 . . . . . 6 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵)))
1413expd 415 . . . . 5 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐴𝐵) = ∅ → (𝐹𝐺) Fn (𝐴𝐵))))
1514impcom 407 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵)) → ((𝐴𝐵) = ∅ → (𝐹𝐺) Fn (𝐴𝐵)))
1615an4s 660 . . 3 (((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ∧ (Fun 𝐺 ∧ dom 𝐺 = 𝐵)) → ((𝐴𝐵) = ∅ → (𝐹𝐺) Fn (𝐴𝐵)))
171, 2, 16syl2anb 598 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐴𝐵) = ∅ → (𝐹𝐺) Fn (𝐴𝐵)))
1817imp 406 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  cun 3896  cin 3897  c0 4282  dom cdm 5619  Fun wfun 6480   Fn wfn 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-fun 6488  df-fn 6489
This theorem is referenced by:  fnund  6601  fun  6690  foun  6786  f1oun  6787  frrlem11  8232  undifixp  8864  bnj535  34923  fullfunfnv  36011  finixpnum  37665  poimirlem1  37681  poimirlem2  37682  poimirlem3  37683  poimirlem4  37684  poimirlem6  37686  poimirlem7  37687  poimirlem11  37691  poimirlem12  37692  poimirlem16  37696  poimirlem17  37697  poimirlem19  37699  poimirlem20  37700
  Copyright terms: Public domain W3C validator