MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnun Structured version   Visualization version   GIF version

Theorem fnun 6635
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
Assertion
Ref Expression
fnun (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))

Proof of Theorem fnun
StepHypRef Expression
1 df-fn 6517 . . 3 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
2 df-fn 6517 . . 3 (𝐺 Fn 𝐵 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐵))
3 ineq12 4181 . . . . . . . . . . 11 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
43eqeq1d 2732 . . . . . . . . . 10 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ (𝐴𝐵) = ∅))
54anbi2d 630 . . . . . . . . 9 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) ↔ ((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐴𝐵) = ∅)))
6 funun 6565 . . . . . . . . 9 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
75, 6biimtrrdi 254 . . . . . . . 8 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐴𝐵) = ∅) → Fun (𝐹𝐺)))
8 dmun 5877 . . . . . . . . 9 dom (𝐹𝐺) = (dom 𝐹 ∪ dom 𝐺)
9 uneq12 4129 . . . . . . . . 9 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (dom 𝐹 ∪ dom 𝐺) = (𝐴𝐵))
108, 9eqtrid 2777 . . . . . . . 8 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → dom (𝐹𝐺) = (𝐴𝐵))
117, 10jctird 526 . . . . . . 7 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐴𝐵) = ∅) → (Fun (𝐹𝐺) ∧ dom (𝐹𝐺) = (𝐴𝐵))))
12 df-fn 6517 . . . . . . 7 ((𝐹𝐺) Fn (𝐴𝐵) ↔ (Fun (𝐹𝐺) ∧ dom (𝐹𝐺) = (𝐴𝐵)))
1311, 12imbitrrdi 252 . . . . . 6 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵)))
1413expd 415 . . . . 5 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐴𝐵) = ∅ → (𝐹𝐺) Fn (𝐴𝐵))))
1514impcom 407 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵)) → ((𝐴𝐵) = ∅ → (𝐹𝐺) Fn (𝐴𝐵)))
1615an4s 660 . . 3 (((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ∧ (Fun 𝐺 ∧ dom 𝐺 = 𝐵)) → ((𝐴𝐵) = ∅ → (𝐹𝐺) Fn (𝐴𝐵)))
171, 2, 16syl2anb 598 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐴𝐵) = ∅ → (𝐹𝐺) Fn (𝐴𝐵)))
1817imp 406 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cun 3915  cin 3916  c0 4299  dom cdm 5641  Fun wfun 6508   Fn wfn 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-fun 6516  df-fn 6517
This theorem is referenced by:  fnund  6636  fun  6725  foun  6821  f1oun  6822  frrlem11  8278  undifixp  8910  bnj535  34887  fullfunfnv  35941  finixpnum  37606  poimirlem1  37622  poimirlem2  37623  poimirlem3  37624  poimirlem4  37625  poimirlem6  37627  poimirlem7  37628  poimirlem11  37632  poimirlem12  37633  poimirlem16  37637  poimirlem17  37638  poimirlem19  37640  poimirlem20  37641
  Copyright terms: Public domain W3C validator