![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwmndgplus | Structured version Visualization version GIF version |
Description: The operation of the monoid of the power set of a class 𝐴 under union. (Contributed by AV, 27-Feb-2024.) |
Ref | Expression |
---|---|
pwmnd.b | ⊢ (Base‘𝑀) = 𝒫 𝐴 |
pwmnd.p | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) |
Ref | Expression |
---|---|
pwmndgplus | ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → (𝑋(+g‘𝑀)𝑌) = (𝑋 ∪ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwmnd.p | . . 3 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦))) |
3 | uneq12 4176 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 ∪ 𝑦) = (𝑋 ∪ 𝑌)) | |
4 | 3 | adantl 481 | . 2 ⊢ (((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 ∪ 𝑦) = (𝑋 ∪ 𝑌)) |
5 | simpl 482 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴) | |
6 | simpr 484 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → 𝑌 ∈ 𝒫 𝐴) | |
7 | unexg 7769 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → (𝑋 ∪ 𝑌) ∈ V) | |
8 | 2, 4, 5, 6, 7 | ovmpod 7592 | 1 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → (𝑋(+g‘𝑀)𝑌) = (𝑋 ∪ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ∪ cun 3964 𝒫 cpw 4608 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 Basecbs 17254 +gcplusg 17307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 |
This theorem is referenced by: pwmndid 18971 pwmnd 18972 |
Copyright terms: Public domain | W3C validator |