| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwmndgplus | Structured version Visualization version GIF version | ||
| Description: The operation of the monoid of the power set of a class 𝐴 under union. (Contributed by AV, 27-Feb-2024.) |
| Ref | Expression |
|---|---|
| pwmnd.b | ⊢ (Base‘𝑀) = 𝒫 𝐴 |
| pwmnd.p | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) |
| Ref | Expression |
|---|---|
| pwmndgplus | ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → (𝑋(+g‘𝑀)𝑌) = (𝑋 ∪ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwmnd.p | . . 3 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦))) |
| 3 | uneq12 4134 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 ∪ 𝑦) = (𝑋 ∪ 𝑌)) | |
| 4 | 3 | adantl 481 | . 2 ⊢ (((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 ∪ 𝑦) = (𝑋 ∪ 𝑌)) |
| 5 | simpl 482 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴) | |
| 6 | simpr 484 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → 𝑌 ∈ 𝒫 𝐴) | |
| 7 | unexg 7726 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → (𝑋 ∪ 𝑌) ∈ V) | |
| 8 | 2, 4, 5, 6, 7 | ovmpod 7548 | 1 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → (𝑋(+g‘𝑀)𝑌) = (𝑋 ∪ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ∪ cun 3920 𝒫 cpw 4571 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 Basecbs 17185 +gcplusg 17226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 |
| This theorem is referenced by: pwmndid 18869 pwmnd 18870 |
| Copyright terms: Public domain | W3C validator |