![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwmndgplus | Structured version Visualization version GIF version |
Description: The operation of the monoid of the power set of a class 𝐴 under union. (Contributed by AV, 27-Feb-2024.) |
Ref | Expression |
---|---|
pwmnd.b | ⊢ (Base‘𝑀) = 𝒫 𝐴 |
pwmnd.p | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) |
Ref | Expression |
---|---|
pwmndgplus | ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → (𝑋(+g‘𝑀)𝑌) = (𝑋 ∪ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwmnd.p | . . 3 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦))) |
3 | uneq12 4186 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 ∪ 𝑦) = (𝑋 ∪ 𝑌)) | |
4 | 3 | adantl 481 | . 2 ⊢ (((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 ∪ 𝑦) = (𝑋 ∪ 𝑌)) |
5 | simpl 482 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴) | |
6 | simpr 484 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → 𝑌 ∈ 𝒫 𝐴) | |
7 | unexg 7780 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → (𝑋 ∪ 𝑌) ∈ V) | |
8 | 2, 4, 5, 6, 7 | ovmpod 7604 | 1 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → (𝑋(+g‘𝑀)𝑌) = (𝑋 ∪ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 𝒫 cpw 4622 ‘cfv 6575 (class class class)co 7450 ∈ cmpo 7452 Basecbs 17260 +gcplusg 17313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6527 df-fun 6577 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 |
This theorem is referenced by: pwmndid 18973 pwmnd 18974 |
Copyright terms: Public domain | W3C validator |