MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwmndgplus Structured version   Visualization version   GIF version

Theorem pwmndgplus 18916
Description: The operation of the monoid of the power set of a class 𝐴 under union. (Contributed by AV, 27-Feb-2024.)
Hypotheses
Ref Expression
pwmnd.b (Base‘𝑀) = 𝒫 𝐴
pwmnd.p (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))
Assertion
Ref Expression
pwmndgplus ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋(+g𝑀)𝑌) = (𝑋𝑌))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)

Proof of Theorem pwmndgplus
StepHypRef Expression
1 pwmnd.p . . 3 (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))
21a1i 11 . 2 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦)))
3 uneq12 4143 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝑦) = (𝑋𝑌))
43adantl 481 . 2 (((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝑦) = (𝑋𝑌))
5 simpl 482 . 2 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴)
6 simpr 484 . 2 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → 𝑌 ∈ 𝒫 𝐴)
7 unexg 7744 . 2 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋𝑌) ∈ V)
82, 4, 5, 6, 7ovmpod 7566 1 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋(+g𝑀)𝑌) = (𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  cun 3929  𝒫 cpw 4580  cfv 6540  (class class class)co 7412  cmpo 7414  Basecbs 17228  +gcplusg 17272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6493  df-fun 6542  df-fv 6548  df-ov 7415  df-oprab 7416  df-mpo 7417
This theorem is referenced by:  pwmndid  18917  pwmnd  18918
  Copyright terms: Public domain W3C validator