| Step | Hyp | Ref
| Expression |
| 1 | | 1oex 8490 |
. . . . . . 7
⊢
1o ∈ V |
| 2 | 1 | ensn1 9035 |
. . . . . 6
⊢
{1o} ≈ 1o |
| 3 | 2 | ensymi 9018 |
. . . . 5
⊢
1o ≈ {1o} |
| 4 | | entr 9020 |
. . . . 5
⊢ ((𝐵 ≈ 1o ∧
1o ≈ {1o}) → 𝐵 ≈ {1o}) |
| 5 | 3, 4 | mpan2 691 |
. . . 4
⊢ (𝐵 ≈ 1o →
𝐵 ≈
{1o}) |
| 6 | | 1on 8492 |
. . . . . . . 8
⊢
1o ∈ On |
| 7 | 6 | onirri 6467 |
. . . . . . 7
⊢ ¬
1o ∈ 1o |
| 8 | | disjsn 4687 |
. . . . . . 7
⊢
((1o ∩ {1o}) = ∅ ↔ ¬
1o ∈ 1o) |
| 9 | 7, 8 | mpbir 231 |
. . . . . 6
⊢
(1o ∩ {1o}) = ∅ |
| 10 | | unen 9060 |
. . . . . 6
⊢ (((𝐴 ≈ 1o ∧
𝐵 ≈ {1o})
∧ ((𝐴 ∩ 𝐵) = ∅ ∧ (1o
∩ {1o}) = ∅)) → (𝐴 ∪ 𝐵) ≈ (1o ∪
{1o})) |
| 11 | 9, 10 | mpanr2 704 |
. . . . 5
⊢ (((𝐴 ≈ 1o ∧
𝐵 ≈ {1o})
∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ≈ (1o ∪
{1o})) |
| 12 | 11 | ex 412 |
. . . 4
⊢ ((𝐴 ≈ 1o ∧
𝐵 ≈ {1o})
→ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∪ 𝐵) ≈ (1o ∪
{1o}))) |
| 13 | 5, 12 | sylan2 593 |
. . 3
⊢ ((𝐴 ≈ 1o ∧
𝐵 ≈ 1o)
→ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∪ 𝐵) ≈ (1o ∪
{1o}))) |
| 14 | | df-2o 8481 |
. . . . 5
⊢
2o = suc 1o |
| 15 | | df-suc 6358 |
. . . . 5
⊢ suc
1o = (1o ∪ {1o}) |
| 16 | 14, 15 | eqtri 2758 |
. . . 4
⊢
2o = (1o ∪ {1o}) |
| 17 | 16 | breq2i 5127 |
. . 3
⊢ ((𝐴 ∪ 𝐵) ≈ 2o ↔ (𝐴 ∪ 𝐵) ≈ (1o ∪
{1o})) |
| 18 | 13, 17 | imbitrrdi 252 |
. 2
⊢ ((𝐴 ≈ 1o ∧
𝐵 ≈ 1o)
→ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∪ 𝐵) ≈ 2o)) |
| 19 | | en1 9038 |
. . 3
⊢ (𝐴 ≈ 1o ↔
∃𝑥 𝐴 = {𝑥}) |
| 20 | | en1 9038 |
. . 3
⊢ (𝐵 ≈ 1o ↔
∃𝑦 𝐵 = {𝑦}) |
| 21 | | sneq 4611 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
| 22 | 21 | uneq2d 4143 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ({𝑥} ∪ {𝑥}) = ({𝑥} ∪ {𝑦})) |
| 23 | | unidm 4132 |
. . . . . . . . . . . . . 14
⊢ ({𝑥} ∪ {𝑥}) = {𝑥} |
| 24 | 22, 23 | eqtr3di 2785 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) = {𝑥}) |
| 25 | | vex 3463 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
| 26 | 25 | ensn1 9035 |
. . . . . . . . . . . . . 14
⊢ {𝑥} ≈
1o |
| 27 | | 1sdom2 9248 |
. . . . . . . . . . . . . 14
⊢
1o ≺ 2o |
| 28 | | ensdomtr 9127 |
. . . . . . . . . . . . . 14
⊢ (({𝑥} ≈ 1o ∧
1o ≺ 2o) → {𝑥} ≺ 2o) |
| 29 | 26, 27, 28 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ {𝑥} ≺
2o |
| 30 | 24, 29 | eqbrtrdi 5158 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) ≺ 2o) |
| 31 | | sdomnen 8995 |
. . . . . . . . . . . 12
⊢ (({𝑥} ∪ {𝑦}) ≺ 2o → ¬ ({𝑥} ∪ {𝑦}) ≈ 2o) |
| 32 | 30, 31 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ¬ ({𝑥} ∪ {𝑦}) ≈ 2o) |
| 33 | 32 | necon2ai 2961 |
. . . . . . . . . 10
⊢ (({𝑥} ∪ {𝑦}) ≈ 2o → 𝑥 ≠ 𝑦) |
| 34 | | disjsn2 4688 |
. . . . . . . . . 10
⊢ (𝑥 ≠ 𝑦 → ({𝑥} ∩ {𝑦}) = ∅) |
| 35 | 33, 34 | syl 17 |
. . . . . . . . 9
⊢ (({𝑥} ∪ {𝑦}) ≈ 2o → ({𝑥} ∩ {𝑦}) = ∅) |
| 36 | 35 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (({𝑥} ∪ {𝑦}) ≈ 2o → ({𝑥} ∩ {𝑦}) = ∅)) |
| 37 | | uneq12 4138 |
. . . . . . . . 9
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴 ∪ 𝐵) = ({𝑥} ∪ {𝑦})) |
| 38 | 37 | breq1d 5129 |
. . . . . . . 8
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴 ∪ 𝐵) ≈ 2o ↔ ({𝑥} ∪ {𝑦}) ≈ 2o)) |
| 39 | | ineq12 4190 |
. . . . . . . . 9
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴 ∩ 𝐵) = ({𝑥} ∩ {𝑦})) |
| 40 | 39 | eqeq1d 2737 |
. . . . . . . 8
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴 ∩ 𝐵) = ∅ ↔ ({𝑥} ∩ {𝑦}) = ∅)) |
| 41 | 36, 38, 40 | 3imtr4d 294 |
. . . . . . 7
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴 ∪ 𝐵) ≈ 2o → (𝐴 ∩ 𝐵) = ∅)) |
| 42 | 41 | ex 412 |
. . . . . 6
⊢ (𝐴 = {𝑥} → (𝐵 = {𝑦} → ((𝐴 ∪ 𝐵) ≈ 2o → (𝐴 ∩ 𝐵) = ∅))) |
| 43 | 42 | exlimdv 1933 |
. . . . 5
⊢ (𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴 ∪ 𝐵) ≈ 2o → (𝐴 ∩ 𝐵) = ∅))) |
| 44 | 43 | exlimiv 1930 |
. . . 4
⊢
(∃𝑥 𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴 ∪ 𝐵) ≈ 2o → (𝐴 ∩ 𝐵) = ∅))) |
| 45 | 44 | imp 406 |
. . 3
⊢
((∃𝑥 𝐴 = {𝑥} ∧ ∃𝑦 𝐵 = {𝑦}) → ((𝐴 ∪ 𝐵) ≈ 2o → (𝐴 ∩ 𝐵) = ∅)) |
| 46 | 19, 20, 45 | syl2anb 598 |
. 2
⊢ ((𝐴 ≈ 1o ∧
𝐵 ≈ 1o)
→ ((𝐴 ∪ 𝐵) ≈ 2o →
(𝐴 ∩ 𝐵) = ∅)) |
| 47 | 18, 46 | impbid 212 |
1
⊢ ((𝐴 ≈ 1o ∧
𝐵 ≈ 1o)
→ ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐴 ∪ 𝐵) ≈ 2o)) |