| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 1oex 8516 | . . . . . . 7
⊢
1o ∈ V | 
| 2 | 1 | ensn1 9061 | . . . . . 6
⊢
{1o} ≈ 1o | 
| 3 | 2 | ensymi 9044 | . . . . 5
⊢
1o ≈ {1o} | 
| 4 |  | entr 9046 | . . . . 5
⊢ ((𝐵 ≈ 1o ∧
1o ≈ {1o}) → 𝐵 ≈ {1o}) | 
| 5 | 3, 4 | mpan2 691 | . . . 4
⊢ (𝐵 ≈ 1o →
𝐵 ≈
{1o}) | 
| 6 |  | 1on 8518 | . . . . . . . 8
⊢
1o ∈ On | 
| 7 | 6 | onirri 6497 | . . . . . . 7
⊢  ¬
1o ∈ 1o | 
| 8 |  | disjsn 4711 | . . . . . . 7
⊢
((1o ∩ {1o}) = ∅ ↔ ¬
1o ∈ 1o) | 
| 9 | 7, 8 | mpbir 231 | . . . . . 6
⊢
(1o ∩ {1o}) = ∅ | 
| 10 |  | unen 9086 | . . . . . 6
⊢ (((𝐴 ≈ 1o ∧
𝐵 ≈ {1o})
∧ ((𝐴 ∩ 𝐵) = ∅ ∧ (1o
∩ {1o}) = ∅)) → (𝐴 ∪ 𝐵) ≈ (1o ∪
{1o})) | 
| 11 | 9, 10 | mpanr2 704 | . . . . 5
⊢ (((𝐴 ≈ 1o ∧
𝐵 ≈ {1o})
∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ≈ (1o ∪
{1o})) | 
| 12 | 11 | ex 412 | . . . 4
⊢ ((𝐴 ≈ 1o ∧
𝐵 ≈ {1o})
→ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∪ 𝐵) ≈ (1o ∪
{1o}))) | 
| 13 | 5, 12 | sylan2 593 | . . 3
⊢ ((𝐴 ≈ 1o ∧
𝐵 ≈ 1o)
→ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∪ 𝐵) ≈ (1o ∪
{1o}))) | 
| 14 |  | df-2o 8507 | . . . . 5
⊢
2o = suc 1o | 
| 15 |  | df-suc 6390 | . . . . 5
⊢ suc
1o = (1o ∪ {1o}) | 
| 16 | 14, 15 | eqtri 2765 | . . . 4
⊢
2o = (1o ∪ {1o}) | 
| 17 | 16 | breq2i 5151 | . . 3
⊢ ((𝐴 ∪ 𝐵) ≈ 2o ↔ (𝐴 ∪ 𝐵) ≈ (1o ∪
{1o})) | 
| 18 | 13, 17 | imbitrrdi 252 | . 2
⊢ ((𝐴 ≈ 1o ∧
𝐵 ≈ 1o)
→ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∪ 𝐵) ≈ 2o)) | 
| 19 |  | en1 9064 | . . 3
⊢ (𝐴 ≈ 1o ↔
∃𝑥 𝐴 = {𝑥}) | 
| 20 |  | en1 9064 | . . 3
⊢ (𝐵 ≈ 1o ↔
∃𝑦 𝐵 = {𝑦}) | 
| 21 |  | sneq 4636 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | 
| 22 | 21 | uneq2d 4168 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ({𝑥} ∪ {𝑥}) = ({𝑥} ∪ {𝑦})) | 
| 23 |  | unidm 4157 | . . . . . . . . . . . . . 14
⊢ ({𝑥} ∪ {𝑥}) = {𝑥} | 
| 24 | 22, 23 | eqtr3di 2792 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) = {𝑥}) | 
| 25 |  | vex 3484 | . . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V | 
| 26 | 25 | ensn1 9061 | . . . . . . . . . . . . . 14
⊢ {𝑥} ≈
1o | 
| 27 |  | 1sdom2 9276 | . . . . . . . . . . . . . 14
⊢
1o ≺ 2o | 
| 28 |  | ensdomtr 9153 | . . . . . . . . . . . . . 14
⊢ (({𝑥} ≈ 1o ∧
1o ≺ 2o) → {𝑥} ≺ 2o) | 
| 29 | 26, 27, 28 | mp2an 692 | . . . . . . . . . . . . 13
⊢ {𝑥} ≺
2o | 
| 30 | 24, 29 | eqbrtrdi 5182 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) ≺ 2o) | 
| 31 |  | sdomnen 9021 | . . . . . . . . . . . 12
⊢ (({𝑥} ∪ {𝑦}) ≺ 2o → ¬ ({𝑥} ∪ {𝑦}) ≈ 2o) | 
| 32 | 30, 31 | syl 17 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ¬ ({𝑥} ∪ {𝑦}) ≈ 2o) | 
| 33 | 32 | necon2ai 2970 | . . . . . . . . . 10
⊢ (({𝑥} ∪ {𝑦}) ≈ 2o → 𝑥 ≠ 𝑦) | 
| 34 |  | disjsn2 4712 | . . . . . . . . . 10
⊢ (𝑥 ≠ 𝑦 → ({𝑥} ∩ {𝑦}) = ∅) | 
| 35 | 33, 34 | syl 17 | . . . . . . . . 9
⊢ (({𝑥} ∪ {𝑦}) ≈ 2o → ({𝑥} ∩ {𝑦}) = ∅) | 
| 36 | 35 | a1i 11 | . . . . . . . 8
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (({𝑥} ∪ {𝑦}) ≈ 2o → ({𝑥} ∩ {𝑦}) = ∅)) | 
| 37 |  | uneq12 4163 | . . . . . . . . 9
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴 ∪ 𝐵) = ({𝑥} ∪ {𝑦})) | 
| 38 | 37 | breq1d 5153 | . . . . . . . 8
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴 ∪ 𝐵) ≈ 2o ↔ ({𝑥} ∪ {𝑦}) ≈ 2o)) | 
| 39 |  | ineq12 4215 | . . . . . . . . 9
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴 ∩ 𝐵) = ({𝑥} ∩ {𝑦})) | 
| 40 | 39 | eqeq1d 2739 | . . . . . . . 8
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴 ∩ 𝐵) = ∅ ↔ ({𝑥} ∩ {𝑦}) = ∅)) | 
| 41 | 36, 38, 40 | 3imtr4d 294 | . . . . . . 7
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴 ∪ 𝐵) ≈ 2o → (𝐴 ∩ 𝐵) = ∅)) | 
| 42 | 41 | ex 412 | . . . . . 6
⊢ (𝐴 = {𝑥} → (𝐵 = {𝑦} → ((𝐴 ∪ 𝐵) ≈ 2o → (𝐴 ∩ 𝐵) = ∅))) | 
| 43 | 42 | exlimdv 1933 | . . . . 5
⊢ (𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴 ∪ 𝐵) ≈ 2o → (𝐴 ∩ 𝐵) = ∅))) | 
| 44 | 43 | exlimiv 1930 | . . . 4
⊢
(∃𝑥 𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴 ∪ 𝐵) ≈ 2o → (𝐴 ∩ 𝐵) = ∅))) | 
| 45 | 44 | imp 406 | . . 3
⊢
((∃𝑥 𝐴 = {𝑥} ∧ ∃𝑦 𝐵 = {𝑦}) → ((𝐴 ∪ 𝐵) ≈ 2o → (𝐴 ∩ 𝐵) = ∅)) | 
| 46 | 19, 20, 45 | syl2anb 598 | . 2
⊢ ((𝐴 ≈ 1o ∧
𝐵 ≈ 1o)
→ ((𝐴 ∪ 𝐵) ≈ 2o →
(𝐴 ∩ 𝐵) = ∅)) | 
| 47 | 18, 46 | impbid 212 | 1
⊢ ((𝐴 ≈ 1o ∧
𝐵 ≈ 1o)
→ ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐴 ∪ 𝐵) ≈ 2o)) |