MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm54.43 Structured version   Visualization version   GIF version

Theorem pm54.43 9998
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. "From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2." See http://en.wikipedia.org/wiki/Principia_Mathematica#Quotations. This theorem states that two sets of cardinality 1 are disjoint iff their union has cardinality 2.

Whitehead and Russell define 1 as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9965), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {π‘₯ ∣ (cardβ€˜π‘₯) = 1o} which is the same as 𝐴 β‰ˆ 1o by pm54.43lem 9997. We do not have several of their earlier lemmas available (which would otherwise be unused by our different approach to arithmetic), so our proof is longer. (It is also longer because we must show every detail.)

Theorem dju1p1e2 10170 shows the derivation of 1+1=2 for cardinal numbers from this theorem. (Contributed by NM, 4-Apr-2007.)

Assertion
Ref Expression
pm54.43 ((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ 1o) β†’ ((𝐴 ∩ 𝐡) = βˆ… ↔ (𝐴 βˆͺ 𝐡) β‰ˆ 2o))

Proof of Theorem pm54.43
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1oex 8478 . . . . . . 7 1o ∈ V
21ensn1 9019 . . . . . 6 {1o} β‰ˆ 1o
32ensymi 9002 . . . . 5 1o β‰ˆ {1o}
4 entr 9004 . . . . 5 ((𝐡 β‰ˆ 1o ∧ 1o β‰ˆ {1o}) β†’ 𝐡 β‰ˆ {1o})
53, 4mpan2 687 . . . 4 (𝐡 β‰ˆ 1o β†’ 𝐡 β‰ˆ {1o})
6 1on 8480 . . . . . . . 8 1o ∈ On
76onirri 6476 . . . . . . 7 Β¬ 1o ∈ 1o
8 disjsn 4714 . . . . . . 7 ((1o ∩ {1o}) = βˆ… ↔ Β¬ 1o ∈ 1o)
97, 8mpbir 230 . . . . . 6 (1o ∩ {1o}) = βˆ…
10 unen 9048 . . . . . 6 (((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ {1o}) ∧ ((𝐴 ∩ 𝐡) = βˆ… ∧ (1o ∩ {1o}) = βˆ…)) β†’ (𝐴 βˆͺ 𝐡) β‰ˆ (1o βˆͺ {1o}))
119, 10mpanr2 700 . . . . 5 (((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ {1o}) ∧ (𝐴 ∩ 𝐡) = βˆ…) β†’ (𝐴 βˆͺ 𝐡) β‰ˆ (1o βˆͺ {1o}))
1211ex 411 . . . 4 ((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ {1o}) β†’ ((𝐴 ∩ 𝐡) = βˆ… β†’ (𝐴 βˆͺ 𝐡) β‰ˆ (1o βˆͺ {1o})))
135, 12sylan2 591 . . 3 ((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ 1o) β†’ ((𝐴 ∩ 𝐡) = βˆ… β†’ (𝐴 βˆͺ 𝐡) β‰ˆ (1o βˆͺ {1o})))
14 df-2o 8469 . . . . 5 2o = suc 1o
15 df-suc 6369 . . . . 5 suc 1o = (1o βˆͺ {1o})
1614, 15eqtri 2758 . . . 4 2o = (1o βˆͺ {1o})
1716breq2i 5155 . . 3 ((𝐴 βˆͺ 𝐡) β‰ˆ 2o ↔ (𝐴 βˆͺ 𝐡) β‰ˆ (1o βˆͺ {1o}))
1813, 17imbitrrdi 251 . 2 ((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ 1o) β†’ ((𝐴 ∩ 𝐡) = βˆ… β†’ (𝐴 βˆͺ 𝐡) β‰ˆ 2o))
19 en1 9023 . . 3 (𝐴 β‰ˆ 1o ↔ βˆƒπ‘₯ 𝐴 = {π‘₯})
20 en1 9023 . . 3 (𝐡 β‰ˆ 1o ↔ βˆƒπ‘¦ 𝐡 = {𝑦})
21 sneq 4637 . . . . . . . . . . . . . . 15 (π‘₯ = 𝑦 β†’ {π‘₯} = {𝑦})
2221uneq2d 4162 . . . . . . . . . . . . . 14 (π‘₯ = 𝑦 β†’ ({π‘₯} βˆͺ {π‘₯}) = ({π‘₯} βˆͺ {𝑦}))
23 unidm 4151 . . . . . . . . . . . . . 14 ({π‘₯} βˆͺ {π‘₯}) = {π‘₯}
2422, 23eqtr3di 2785 . . . . . . . . . . . . 13 (π‘₯ = 𝑦 β†’ ({π‘₯} βˆͺ {𝑦}) = {π‘₯})
25 vex 3476 . . . . . . . . . . . . . . 15 π‘₯ ∈ V
2625ensn1 9019 . . . . . . . . . . . . . 14 {π‘₯} β‰ˆ 1o
27 1sdom2 9242 . . . . . . . . . . . . . 14 1o β‰Ί 2o
28 ensdomtr 9115 . . . . . . . . . . . . . 14 (({π‘₯} β‰ˆ 1o ∧ 1o β‰Ί 2o) β†’ {π‘₯} β‰Ί 2o)
2926, 27, 28mp2an 688 . . . . . . . . . . . . 13 {π‘₯} β‰Ί 2o
3024, 29eqbrtrdi 5186 . . . . . . . . . . . 12 (π‘₯ = 𝑦 β†’ ({π‘₯} βˆͺ {𝑦}) β‰Ί 2o)
31 sdomnen 8979 . . . . . . . . . . . 12 (({π‘₯} βˆͺ {𝑦}) β‰Ί 2o β†’ Β¬ ({π‘₯} βˆͺ {𝑦}) β‰ˆ 2o)
3230, 31syl 17 . . . . . . . . . . 11 (π‘₯ = 𝑦 β†’ Β¬ ({π‘₯} βˆͺ {𝑦}) β‰ˆ 2o)
3332necon2ai 2968 . . . . . . . . . 10 (({π‘₯} βˆͺ {𝑦}) β‰ˆ 2o β†’ π‘₯ β‰  𝑦)
34 disjsn2 4715 . . . . . . . . . 10 (π‘₯ β‰  𝑦 β†’ ({π‘₯} ∩ {𝑦}) = βˆ…)
3533, 34syl 17 . . . . . . . . 9 (({π‘₯} βˆͺ {𝑦}) β‰ˆ 2o β†’ ({π‘₯} ∩ {𝑦}) = βˆ…)
3635a1i 11 . . . . . . . 8 ((𝐴 = {π‘₯} ∧ 𝐡 = {𝑦}) β†’ (({π‘₯} βˆͺ {𝑦}) β‰ˆ 2o β†’ ({π‘₯} ∩ {𝑦}) = βˆ…))
37 uneq12 4157 . . . . . . . . 9 ((𝐴 = {π‘₯} ∧ 𝐡 = {𝑦}) β†’ (𝐴 βˆͺ 𝐡) = ({π‘₯} βˆͺ {𝑦}))
3837breq1d 5157 . . . . . . . 8 ((𝐴 = {π‘₯} ∧ 𝐡 = {𝑦}) β†’ ((𝐴 βˆͺ 𝐡) β‰ˆ 2o ↔ ({π‘₯} βˆͺ {𝑦}) β‰ˆ 2o))
39 ineq12 4206 . . . . . . . . 9 ((𝐴 = {π‘₯} ∧ 𝐡 = {𝑦}) β†’ (𝐴 ∩ 𝐡) = ({π‘₯} ∩ {𝑦}))
4039eqeq1d 2732 . . . . . . . 8 ((𝐴 = {π‘₯} ∧ 𝐡 = {𝑦}) β†’ ((𝐴 ∩ 𝐡) = βˆ… ↔ ({π‘₯} ∩ {𝑦}) = βˆ…))
4136, 38, 403imtr4d 293 . . . . . . 7 ((𝐴 = {π‘₯} ∧ 𝐡 = {𝑦}) β†’ ((𝐴 βˆͺ 𝐡) β‰ˆ 2o β†’ (𝐴 ∩ 𝐡) = βˆ…))
4241ex 411 . . . . . 6 (𝐴 = {π‘₯} β†’ (𝐡 = {𝑦} β†’ ((𝐴 βˆͺ 𝐡) β‰ˆ 2o β†’ (𝐴 ∩ 𝐡) = βˆ…)))
4342exlimdv 1934 . . . . 5 (𝐴 = {π‘₯} β†’ (βˆƒπ‘¦ 𝐡 = {𝑦} β†’ ((𝐴 βˆͺ 𝐡) β‰ˆ 2o β†’ (𝐴 ∩ 𝐡) = βˆ…)))
4443exlimiv 1931 . . . 4 (βˆƒπ‘₯ 𝐴 = {π‘₯} β†’ (βˆƒπ‘¦ 𝐡 = {𝑦} β†’ ((𝐴 βˆͺ 𝐡) β‰ˆ 2o β†’ (𝐴 ∩ 𝐡) = βˆ…)))
4544imp 405 . . 3 ((βˆƒπ‘₯ 𝐴 = {π‘₯} ∧ βˆƒπ‘¦ 𝐡 = {𝑦}) β†’ ((𝐴 βˆͺ 𝐡) β‰ˆ 2o β†’ (𝐴 ∩ 𝐡) = βˆ…))
4619, 20, 45syl2anb 596 . 2 ((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ 1o) β†’ ((𝐴 βˆͺ 𝐡) β‰ˆ 2o β†’ (𝐴 ∩ 𝐡) = βˆ…))
4718, 46impbid 211 1 ((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ 1o) β†’ ((𝐴 ∩ 𝐡) = βˆ… ↔ (𝐴 βˆͺ 𝐡) β‰ˆ 2o))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539  βˆƒwex 1779   ∈ wcel 2104   β‰  wne 2938   βˆͺ cun 3945   ∩ cin 3946  βˆ…c0 4321  {csn 4627   class class class wbr 5147  suc csuc 6365  1oc1o 8461  2oc2o 8462   β‰ˆ cen 8938   β‰Ί csdm 8940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-1o 8468  df-2o 8469  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944
This theorem is referenced by:  pr2nelemOLD  10000  dju1p1e2  10170
  Copyright terms: Public domain W3C validator