MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm54.43 Structured version   Visualization version   GIF version

Theorem pm54.43 10023
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. "From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2." See http://en.wikipedia.org/wiki/Principia_Mathematica#Quotations. This theorem states that two sets of cardinality 1 are disjoint iff their union has cardinality 2.

Whitehead and Russell define 1 as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9990), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o} which is the same as 𝐴 ≈ 1o by pm54.43lem 10022. We do not have several of their earlier lemmas available (which would otherwise be unused by our different approach to arithmetic), so our proof is longer. (It is also longer because we must show every detail.)

Theorem dju1p1e2 10196 shows the derivation of 1+1=2 for cardinal numbers from this theorem. (Contributed by NM, 4-Apr-2007.)

Assertion
Ref Expression
pm54.43 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2o))

Proof of Theorem pm54.43
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1oex 8498 . . . . . . 7 1o ∈ V
21ensn1 9043 . . . . . 6 {1o} ≈ 1o
32ensymi 9026 . . . . 5 1o ≈ {1o}
4 entr 9028 . . . . 5 ((𝐵 ≈ 1o ∧ 1o ≈ {1o}) → 𝐵 ≈ {1o})
53, 4mpan2 691 . . . 4 (𝐵 ≈ 1o𝐵 ≈ {1o})
6 1on 8500 . . . . . . . 8 1o ∈ On
76onirri 6477 . . . . . . 7 ¬ 1o ∈ 1o
8 disjsn 4691 . . . . . . 7 ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o)
97, 8mpbir 231 . . . . . 6 (1o ∩ {1o}) = ∅
10 unen 9068 . . . . . 6 (((𝐴 ≈ 1o𝐵 ≈ {1o}) ∧ ((𝐴𝐵) = ∅ ∧ (1o ∩ {1o}) = ∅)) → (𝐴𝐵) ≈ (1o ∪ {1o}))
119, 10mpanr2 704 . . . . 5 (((𝐴 ≈ 1o𝐵 ≈ {1o}) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (1o ∪ {1o}))
1211ex 412 . . . 4 ((𝐴 ≈ 1o𝐵 ≈ {1o}) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ (1o ∪ {1o})))
135, 12sylan2 593 . . 3 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ (1o ∪ {1o})))
14 df-2o 8489 . . . . 5 2o = suc 1o
15 df-suc 6369 . . . . 5 suc 1o = (1o ∪ {1o})
1614, 15eqtri 2757 . . . 4 2o = (1o ∪ {1o})
1716breq2i 5131 . . 3 ((𝐴𝐵) ≈ 2o ↔ (𝐴𝐵) ≈ (1o ∪ {1o}))
1813, 17imbitrrdi 252 . 2 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ 2o))
19 en1 9046 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
20 en1 9046 . . 3 (𝐵 ≈ 1o ↔ ∃𝑦 𝐵 = {𝑦})
21 sneq 4616 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2221uneq2d 4148 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑥}) = ({𝑥} ∪ {𝑦}))
23 unidm 4137 . . . . . . . . . . . . . 14 ({𝑥} ∪ {𝑥}) = {𝑥}
2422, 23eqtr3di 2784 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) = {𝑥})
25 vex 3467 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2625ensn1 9043 . . . . . . . . . . . . . 14 {𝑥} ≈ 1o
27 1sdom2 9258 . . . . . . . . . . . . . 14 1o ≺ 2o
28 ensdomtr 9135 . . . . . . . . . . . . . 14 (({𝑥} ≈ 1o ∧ 1o ≺ 2o) → {𝑥} ≺ 2o)
2926, 27, 28mp2an 692 . . . . . . . . . . . . 13 {𝑥} ≺ 2o
3024, 29eqbrtrdi 5162 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) ≺ 2o)
31 sdomnen 9003 . . . . . . . . . . . 12 (({𝑥} ∪ {𝑦}) ≺ 2o → ¬ ({𝑥} ∪ {𝑦}) ≈ 2o)
3230, 31syl 17 . . . . . . . . . . 11 (𝑥 = 𝑦 → ¬ ({𝑥} ∪ {𝑦}) ≈ 2o)
3332necon2ai 2960 . . . . . . . . . 10 (({𝑥} ∪ {𝑦}) ≈ 2o𝑥𝑦)
34 disjsn2 4692 . . . . . . . . . 10 (𝑥𝑦 → ({𝑥} ∩ {𝑦}) = ∅)
3533, 34syl 17 . . . . . . . . 9 (({𝑥} ∪ {𝑦}) ≈ 2o → ({𝑥} ∩ {𝑦}) = ∅)
3635a1i 11 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (({𝑥} ∪ {𝑦}) ≈ 2o → ({𝑥} ∩ {𝑦}) = ∅))
37 uneq12 4143 . . . . . . . . 9 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴𝐵) = ({𝑥} ∪ {𝑦}))
3837breq1d 5133 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2o ↔ ({𝑥} ∪ {𝑦}) ≈ 2o))
39 ineq12 4195 . . . . . . . . 9 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴𝐵) = ({𝑥} ∩ {𝑦}))
4039eqeq1d 2736 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) = ∅ ↔ ({𝑥} ∩ {𝑦}) = ∅))
4136, 38, 403imtr4d 294 . . . . . . 7 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅))
4241ex 412 . . . . . 6 (𝐴 = {𝑥} → (𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅)))
4342exlimdv 1932 . . . . 5 (𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅)))
4443exlimiv 1929 . . . 4 (∃𝑥 𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅)))
4544imp 406 . . 3 ((∃𝑥 𝐴 = {𝑥} ∧ ∃𝑦 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅))
4619, 20, 45syl2anb 598 . 2 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅))
4718, 46impbid 212 1 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2o))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2931  cun 3929  cin 3930  c0 4313  {csn 4606   class class class wbr 5123  suc csuc 6365  1oc1o 8481  2oc2o 8482  cen 8964  csdm 8966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-1o 8488  df-2o 8489  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970
This theorem is referenced by:  pr2nelemOLD  10025  dju1p1e2  10196
  Copyright terms: Public domain W3C validator