MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm54.43 Structured version   Visualization version   GIF version

Theorem pm54.43 9993
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. "From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2." See http://en.wikipedia.org/wiki/Principia_Mathematica#Quotations. This theorem states that two sets of cardinality 1 are disjoint iff their union has cardinality 2.

Whitehead and Russell define 1 as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9960), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {π‘₯ ∣ (cardβ€˜π‘₯) = 1o} which is the same as 𝐴 β‰ˆ 1o by pm54.43lem 9992. We do not have several of their earlier lemmas available (which would otherwise be unused by our different approach to arithmetic), so our proof is longer. (It is also longer because we must show every detail.)

Theorem dju1p1e2 10165 shows the derivation of 1+1=2 for cardinal numbers from this theorem. (Contributed by NM, 4-Apr-2007.)

Assertion
Ref Expression
pm54.43 ((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ 1o) β†’ ((𝐴 ∩ 𝐡) = βˆ… ↔ (𝐴 βˆͺ 𝐡) β‰ˆ 2o))

Proof of Theorem pm54.43
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1oex 8473 . . . . . . 7 1o ∈ V
21ensn1 9014 . . . . . 6 {1o} β‰ˆ 1o
32ensymi 8997 . . . . 5 1o β‰ˆ {1o}
4 entr 8999 . . . . 5 ((𝐡 β‰ˆ 1o ∧ 1o β‰ˆ {1o}) β†’ 𝐡 β‰ˆ {1o})
53, 4mpan2 690 . . . 4 (𝐡 β‰ˆ 1o β†’ 𝐡 β‰ˆ {1o})
6 1on 8475 . . . . . . . 8 1o ∈ On
76onirri 6475 . . . . . . 7 Β¬ 1o ∈ 1o
8 disjsn 4715 . . . . . . 7 ((1o ∩ {1o}) = βˆ… ↔ Β¬ 1o ∈ 1o)
97, 8mpbir 230 . . . . . 6 (1o ∩ {1o}) = βˆ…
10 unen 9043 . . . . . 6 (((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ {1o}) ∧ ((𝐴 ∩ 𝐡) = βˆ… ∧ (1o ∩ {1o}) = βˆ…)) β†’ (𝐴 βˆͺ 𝐡) β‰ˆ (1o βˆͺ {1o}))
119, 10mpanr2 703 . . . . 5 (((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ {1o}) ∧ (𝐴 ∩ 𝐡) = βˆ…) β†’ (𝐴 βˆͺ 𝐡) β‰ˆ (1o βˆͺ {1o}))
1211ex 414 . . . 4 ((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ {1o}) β†’ ((𝐴 ∩ 𝐡) = βˆ… β†’ (𝐴 βˆͺ 𝐡) β‰ˆ (1o βˆͺ {1o})))
135, 12sylan2 594 . . 3 ((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ 1o) β†’ ((𝐴 ∩ 𝐡) = βˆ… β†’ (𝐴 βˆͺ 𝐡) β‰ˆ (1o βˆͺ {1o})))
14 df-2o 8464 . . . . 5 2o = suc 1o
15 df-suc 6368 . . . . 5 suc 1o = (1o βˆͺ {1o})
1614, 15eqtri 2761 . . . 4 2o = (1o βˆͺ {1o})
1716breq2i 5156 . . 3 ((𝐴 βˆͺ 𝐡) β‰ˆ 2o ↔ (𝐴 βˆͺ 𝐡) β‰ˆ (1o βˆͺ {1o}))
1813, 17syl6ibr 252 . 2 ((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ 1o) β†’ ((𝐴 ∩ 𝐡) = βˆ… β†’ (𝐴 βˆͺ 𝐡) β‰ˆ 2o))
19 en1 9018 . . 3 (𝐴 β‰ˆ 1o ↔ βˆƒπ‘₯ 𝐴 = {π‘₯})
20 en1 9018 . . 3 (𝐡 β‰ˆ 1o ↔ βˆƒπ‘¦ 𝐡 = {𝑦})
21 sneq 4638 . . . . . . . . . . . . . . 15 (π‘₯ = 𝑦 β†’ {π‘₯} = {𝑦})
2221uneq2d 4163 . . . . . . . . . . . . . 14 (π‘₯ = 𝑦 β†’ ({π‘₯} βˆͺ {π‘₯}) = ({π‘₯} βˆͺ {𝑦}))
23 unidm 4152 . . . . . . . . . . . . . 14 ({π‘₯} βˆͺ {π‘₯}) = {π‘₯}
2422, 23eqtr3di 2788 . . . . . . . . . . . . 13 (π‘₯ = 𝑦 β†’ ({π‘₯} βˆͺ {𝑦}) = {π‘₯})
25 vex 3479 . . . . . . . . . . . . . . 15 π‘₯ ∈ V
2625ensn1 9014 . . . . . . . . . . . . . 14 {π‘₯} β‰ˆ 1o
27 1sdom2 9237 . . . . . . . . . . . . . 14 1o β‰Ί 2o
28 ensdomtr 9110 . . . . . . . . . . . . . 14 (({π‘₯} β‰ˆ 1o ∧ 1o β‰Ί 2o) β†’ {π‘₯} β‰Ί 2o)
2926, 27, 28mp2an 691 . . . . . . . . . . . . 13 {π‘₯} β‰Ί 2o
3024, 29eqbrtrdi 5187 . . . . . . . . . . . 12 (π‘₯ = 𝑦 β†’ ({π‘₯} βˆͺ {𝑦}) β‰Ί 2o)
31 sdomnen 8974 . . . . . . . . . . . 12 (({π‘₯} βˆͺ {𝑦}) β‰Ί 2o β†’ Β¬ ({π‘₯} βˆͺ {𝑦}) β‰ˆ 2o)
3230, 31syl 17 . . . . . . . . . . 11 (π‘₯ = 𝑦 β†’ Β¬ ({π‘₯} βˆͺ {𝑦}) β‰ˆ 2o)
3332necon2ai 2971 . . . . . . . . . 10 (({π‘₯} βˆͺ {𝑦}) β‰ˆ 2o β†’ π‘₯ β‰  𝑦)
34 disjsn2 4716 . . . . . . . . . 10 (π‘₯ β‰  𝑦 β†’ ({π‘₯} ∩ {𝑦}) = βˆ…)
3533, 34syl 17 . . . . . . . . 9 (({π‘₯} βˆͺ {𝑦}) β‰ˆ 2o β†’ ({π‘₯} ∩ {𝑦}) = βˆ…)
3635a1i 11 . . . . . . . 8 ((𝐴 = {π‘₯} ∧ 𝐡 = {𝑦}) β†’ (({π‘₯} βˆͺ {𝑦}) β‰ˆ 2o β†’ ({π‘₯} ∩ {𝑦}) = βˆ…))
37 uneq12 4158 . . . . . . . . 9 ((𝐴 = {π‘₯} ∧ 𝐡 = {𝑦}) β†’ (𝐴 βˆͺ 𝐡) = ({π‘₯} βˆͺ {𝑦}))
3837breq1d 5158 . . . . . . . 8 ((𝐴 = {π‘₯} ∧ 𝐡 = {𝑦}) β†’ ((𝐴 βˆͺ 𝐡) β‰ˆ 2o ↔ ({π‘₯} βˆͺ {𝑦}) β‰ˆ 2o))
39 ineq12 4207 . . . . . . . . 9 ((𝐴 = {π‘₯} ∧ 𝐡 = {𝑦}) β†’ (𝐴 ∩ 𝐡) = ({π‘₯} ∩ {𝑦}))
4039eqeq1d 2735 . . . . . . . 8 ((𝐴 = {π‘₯} ∧ 𝐡 = {𝑦}) β†’ ((𝐴 ∩ 𝐡) = βˆ… ↔ ({π‘₯} ∩ {𝑦}) = βˆ…))
4136, 38, 403imtr4d 294 . . . . . . 7 ((𝐴 = {π‘₯} ∧ 𝐡 = {𝑦}) β†’ ((𝐴 βˆͺ 𝐡) β‰ˆ 2o β†’ (𝐴 ∩ 𝐡) = βˆ…))
4241ex 414 . . . . . 6 (𝐴 = {π‘₯} β†’ (𝐡 = {𝑦} β†’ ((𝐴 βˆͺ 𝐡) β‰ˆ 2o β†’ (𝐴 ∩ 𝐡) = βˆ…)))
4342exlimdv 1937 . . . . 5 (𝐴 = {π‘₯} β†’ (βˆƒπ‘¦ 𝐡 = {𝑦} β†’ ((𝐴 βˆͺ 𝐡) β‰ˆ 2o β†’ (𝐴 ∩ 𝐡) = βˆ…)))
4443exlimiv 1934 . . . 4 (βˆƒπ‘₯ 𝐴 = {π‘₯} β†’ (βˆƒπ‘¦ 𝐡 = {𝑦} β†’ ((𝐴 βˆͺ 𝐡) β‰ˆ 2o β†’ (𝐴 ∩ 𝐡) = βˆ…)))
4544imp 408 . . 3 ((βˆƒπ‘₯ 𝐴 = {π‘₯} ∧ βˆƒπ‘¦ 𝐡 = {𝑦}) β†’ ((𝐴 βˆͺ 𝐡) β‰ˆ 2o β†’ (𝐴 ∩ 𝐡) = βˆ…))
4619, 20, 45syl2anb 599 . 2 ((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ 1o) β†’ ((𝐴 βˆͺ 𝐡) β‰ˆ 2o β†’ (𝐴 ∩ 𝐡) = βˆ…))
4718, 46impbid 211 1 ((𝐴 β‰ˆ 1o ∧ 𝐡 β‰ˆ 1o) β†’ ((𝐴 ∩ 𝐡) = βˆ… ↔ (𝐴 βˆͺ 𝐡) β‰ˆ 2o))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107   β‰  wne 2941   βˆͺ cun 3946   ∩ cin 3947  βˆ…c0 4322  {csn 4628   class class class wbr 5148  suc csuc 6364  1oc1o 8456  2oc2o 8457   β‰ˆ cen 8933   β‰Ί csdm 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6365  df-on 6366  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-1o 8463  df-2o 8464  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939
This theorem is referenced by:  pr2nelemOLD  9995  dju1p1e2  10165
  Copyright terms: Public domain W3C validator