MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fntpg Structured version   Visualization version   GIF version

Theorem fntpg 6478
Description: Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
Assertion
Ref Expression
fntpg (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍})

Proof of Theorem fntpg
StepHypRef Expression
1 funtpg 6473 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})
2 dmsnopg 6105 . . . . . . . . . 10 (𝐴𝐹 → dom {⟨𝑋, 𝐴⟩} = {𝑋})
323ad2ant1 1131 . . . . . . . . 9 ((𝐴𝐹𝐵𝐺𝐶𝐻) → dom {⟨𝑋, 𝐴⟩} = {𝑋})
4 dmsnopg 6105 . . . . . . . . . 10 (𝐵𝐺 → dom {⟨𝑌, 𝐵⟩} = {𝑌})
543ad2ant2 1132 . . . . . . . . 9 ((𝐴𝐹𝐵𝐺𝐶𝐻) → dom {⟨𝑌, 𝐵⟩} = {𝑌})
63, 5jca 511 . . . . . . . 8 ((𝐴𝐹𝐵𝐺𝐶𝐻) → (dom {⟨𝑋, 𝐴⟩} = {𝑋} ∧ dom {⟨𝑌, 𝐵⟩} = {𝑌}))
763ad2ant2 1132 . . . . . . 7 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩} = {𝑋} ∧ dom {⟨𝑌, 𝐵⟩} = {𝑌}))
8 uneq12 4088 . . . . . . 7 ((dom {⟨𝑋, 𝐴⟩} = {𝑋} ∧ dom {⟨𝑌, 𝐵⟩} = {𝑌}) → (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = ({𝑋} ∪ {𝑌}))
97, 8syl 17 . . . . . 6 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = ({𝑋} ∪ {𝑌}))
10 df-pr 4561 . . . . . 6 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
119, 10eqtr4di 2797 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
12 df-pr 4561 . . . . . . . 8 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩})
1312dmeqi 5802 . . . . . . 7 dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩})
1413eqeq1i 2743 . . . . . 6 (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌} ↔ dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
15 dmun 5808 . . . . . . 7 dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩}) = (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩})
1615eqeq1i 2743 . . . . . 6 (dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌} ↔ (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
1714, 16bitri 274 . . . . 5 (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌} ↔ (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
1811, 17sylibr 233 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌})
19 dmsnopg 6105 . . . . . 6 (𝐶𝐻 → dom {⟨𝑍, 𝐶⟩} = {𝑍})
20193ad2ant3 1133 . . . . 5 ((𝐴𝐹𝐵𝐺𝐶𝐻) → dom {⟨𝑍, 𝐶⟩} = {𝑍})
21203ad2ant2 1132 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑍, 𝐶⟩} = {𝑍})
2218, 21uneq12d 4094 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ dom {⟨𝑍, 𝐶⟩}) = ({𝑋, 𝑌} ∪ {𝑍}))
23 df-tp 4563 . . . . 5 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
2423dmeqi 5802 . . . 4 dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = dom ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
25 dmun 5808 . . . 4 dom ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}) = (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ dom {⟨𝑍, 𝐶⟩})
2624, 25eqtri 2766 . . 3 dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ dom {⟨𝑍, 𝐶⟩})
27 df-tp 4563 . . 3 {𝑋, 𝑌, 𝑍} = ({𝑋, 𝑌} ∪ {𝑍})
2822, 26, 273eqtr4g 2804 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = {𝑋, 𝑌, 𝑍})
29 df-fn 6421 . 2 ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍} ↔ (Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} ∧ dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = {𝑋, 𝑌, 𝑍}))
301, 28, 29sylanbrc 582 1 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cun 3881  {csn 4558  {cpr 4560  {ctp 4562  cop 4564  dom cdm 5580  Fun wfun 6412   Fn wfn 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-fun 6420  df-fn 6421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator